DOI QR코드

DOI QR Code

PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions

복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬

  • Kim, Nam-Yong (School of Electronics, Info. & Comm. Engineering, kangwon National University) ;
  • Kang, Sung-Jin (School of Info. Tech. Engineering, Korea University of Tech. and Educ.)
  • 김남용 (강원대학교 전자정보통신공학부) ;
  • 강성진 (한국기술교육대학교 정보기술공학부)
  • Received : 2010.08.30
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

This paper introduces the complex-version of an Euclidean distance minimization algorithm based on a set of delta functions. The algorithm is analyzed to be able to compensate inherently the channel phase distortion caused by inferior complex channels. Also this algorithm has a relatively small size of Gaussian kernel compared to the conventional method of using a randomly generated symbol set. This characteristic implies that the information potential between desired symbol and output is higher so that the algorithm forces output more strongly to gather close to the desired symbol. Based on 16 QAM system and phase distorted complex-channel models, mean squared error (MSE) performance and concentration performance of output symbol points are evaluated. Simulation results show that the algorithm compensates channel phase distortion effectively in constellation performance and about 5 dB enhancement in steady state MSE performance.

이 논문은, 델타함수열에 기본을 둔 블라인드 알고리듬을 복소 채널에 적용할 수 있도록 그 복소화 과정을 소개하고 복소 채널의 블라인드 등화에서 채널의 위상왜곡 문제를 해결할 수 있음을 보였다. 또한, 기존의 랜덤 심볼열을 사용한 방식에 비해 가우시안 커널의 폭이 비교적 작은 값을 갖는 것으로 나타나, 출력 신호점을 원하는 심볼점에 끌어오는 정보 포텐셜의 값이 보다 큰 것으로 분석되었다. 16 QAM 시스템에 복소 위상왜곡 채널을 기준으로 하여 자승평균오차 (MSE)의 수렴 성능과 심볼점 집결성능을 평가하였으며 시뮬레이션 결과에서 채널 위상 왜곡이 효과적으로 보상됨을 성상도 성능에서 보였으며 정상상태 MSE 성능에서는 기존 방식보다 5 dB 이상 개선되었다.

Keywords

References

  1. 강성진, 김남용, "IS-95 역방향 링크 신호의 품질 측정 알고리즘," 한국산학기술학회 논문지, 11권, 9호, 9월, 2010, pp. 3428-3434.
  2. J. R. Treichler and B. Agee, "A new approach to multipath correction of constant modulus signals," IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-31, Nov. 1983, pp. 349-372.
  3. J. C. Principe, D. Xu and J. Fisher, Information Theoretic Learning in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, (New York, USA), 2000, pp. 265-319.
  4. K. H. Jeong, J. W. Xu, D. Erdogmus, and J. C. Principe, "A new classifier based on information theoretic learning with unlabeled data," Neural Networks, 18, 2005, pp. 719-726. https://doi.org/10.1016/j.neunet.2005.06.018
  5. N. Kim, K. H. Jeong, and K. Kwon, "A Study on the Weighting Effect on Information Potentials in Blind Equalizers for Multi-point Communication," International Conference on Information Science and Technology, APIC-IST 2008, (Indang, Philippines), Dec. 18-19, 2008, pp. 103-108.
  6. N. Kim, K. H. Jeong and L. Yang, "Euclidean Distance Minimization of Probability Density Functions for Blind Equalization," Journal of Communications and Networks, Accepted, 2010.
  7. N. Kim, "A Study on the Complex - Channel Blind Equalization Using ITL Algorithms," The Journal of Korean Information and communications Society, Accepted, 2010.
  8. E. Parzen "On Estimation of a Probability Density Function and Mode," in Time Series Analysis Papers, San Diego, Holden-Day, 1967.
  9. V. Weerackody and S. A. Kassam, "Dual-Mode Type Algorithms for Blind Equalization," IEEE Trans. on Comm., vol. 42, Jan. 1994, pp. 22-28. https://doi.org/10.1109/26.275296