Abstract
Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.
기존의 패턴 탐사 기법들은 대부분 객체가 갖는 공간 정보의 연속적인 변화에 대한 패턴 탐사는 가능하나, 추출하고자 하는 패턴에 반드시 포함되어야 하는 공간 정보에 대한 제약이 없어 특정 지점들 사이의 최적 경로 탐색 문제나 단위기간 동안 이동 객체가 순회해야 하는 지점들에 대한 경로 예측 문제 등에 적용하기 어렵다. 본 논문에서는 Road Network 상의 특정한 지점들 사이를 이동한 객체의 위치 데이터들 중 최다 빈발 패턴과 시간 및 비용 등의 가중치를 복합적으로 고려하여 최적의 이동 경로를 탐색하는 방법(Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) algorithm)[13]을 이용하여, 공간 개념 계층에 따른 경로 탐색의 정확도를 분석한다. 분석의 결과는 패턴 탐사 과정에 있어 공간 제약을 적용하여 검색 데이터 범위를 축소함으로써 데이터베이스 검색 시간을 최소화함을 보이고, 또한 공간 추상 계층의 각 계층별 영역 내 포함여부를 고려함으로써 효율적으로 최적 이동 패턴을 탐색하여 제공하도록 한다.