DOI QR코드

DOI QR Code

서로 다른 길이를 갖는 이중벽 탄소 나노튜브 공진기의 초고주파 주파수 특성

Ultra-High Frequency Characteristics of Double-Wall Carbon Nanotube Resonator with Different Length

  • 김진태 (한서대학교 컴퓨터정보공학과) ;
  • 이준하 (상명대학교 컴퓨터시스템공학과) ;
  • 이강호 (국립한국재활복지대학 정보보안과) ;
  • 최종호 (강남대학교 전자공학과)
  • 투고 : 2010.10.18
  • 심사 : 2010.11.15
  • 발행 : 2010.12.31

초록

본 논문에서는 고전적인 분자 동역학 시뮬레이션을 통해서 다양한 길이를 가진 이중벽 탄소나노 튜브로 만들어진 초고주파 나노 기계 공진기의 주파수 변동 특성을 분석한다. 분석의 목적은 이중벽 탄소나노 튜브 벽의 길이에 따라 변동하는 공진기의 주파수 분석이다. 실험 결과, 주파수 변동이 여러 가지 외벽 길이 값 L10에 대해서는 내벽/외벽 길이 비율 L5/L10의 함수로 최대 주파수로 정규화된 공진 주파수가 Pearson VII 함수에 잘 맞고, 여러 가지 내벽 길이 값에 대해서는 외벽/내벽 길이 비율의 함수로 최대 주파수로 정규화된 공진 주파수가 Gauss 분산 함수에 잘 맞는 것을 보여준다.

In this paper, we have investigated ultrahigh frequency nano-mechanical resonators, made of DWCNTs with various wall lengths, via classical molecular dynamics simulations. We have aimed our analysis on the frequency variations of these resonators with the DWCNT wall lengths. The results show that the variations can be well fitted by either the Pearson VII function when the resonant frequency of normalized by its maximum frequency is plotted as a function of the inner/outer wall length ratio L5/L10 for different values of the outer wall length L10, and the Gauss distribution function when the resonant frequency of normalized by its maximum frequency is plotted as a function of the outer/inner wall length ratio for different values of the inner wall length.

키워드

참고문헌

  1. http://www.nec.co.jp/
  2. D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, "Mechanics of carbon nanotubes," Applied Mechanics Reviews, Vol. 55, pp. 495, 2002. https://doi.org/10.1115/1.1490129
  3. C. Li and T.-W. Chou, "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators," Physical Review B, Vol. 68 pp. 073405, 2003.
  4. B. I. Yakobson, C. J. Brabec, and J. Bernholc, "Nanomechanics of carbon tubes: Instabilities beyond linear response," Physical Review Letters, Vol. 76, pp. 2511-2514, 1996. https://doi.org/10.1103/PhysRevLett.76.2511
  5. H. J. De Los Santos, Introduction to Microelectromechanical Microwave Systems, Artech House Publishers, London, 1999.
  6. H. Jiang, M.-F. Yu, B. Liou, and Y. Huang, "Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator," Physical Review Letters, Vol. 93, pp. 185501, 2004. https://doi.org/10.1103/PhysRevLett.93.185501
  7. S. C. Tsang, P. J. F. Harris, and M. L. H. Green, "Thinning and opening of carbon nanotubes by oxidation using carbon dioxide," Nature, Vol. 362, pp.520-522, 1993. https://doi.org/10.1038/362520a0
  8. Q. Zheng and Q. Jiang, "Multiwalled carbon nanotubes as gigahertz oscillators," Physical Review Letters, Vol. 88, pp. 045503, 2002. https://doi.org/10.1103/PhysRevLett.88.045503
  9. K. Y. Xu, X. N. Guo, and C. Q. Ru, "Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces," 2006., Vol. 99, pp. 064303, 2006. https://doi.org/10.1063/1.2179970
  10. http://www.dolcera.com/wiki/images/
  11. J. Tersoff, "New empirical model for the structural properties of silicon", Physical Review Letters, Vol. 56, pp. 632-635, 1986. https://doi.org/10.1103/PhysRevLett.56.632
  12. J. Tersoff, "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems," Physical Review, Vol. B39, pp.5566-5568, 1989.
  13. Y.-J. Song, J.-H. Lee, J.-T. Kim, and J.-H. Choi, "A study of ultra-high frequency characteristics of twin-wall carbon nanotube resonator," Proc. 2010 International Conference on Electronics, Informations and Communications, pp. 417-418, 2010.
  14. P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, "Current saturation and electrical breakdown in multiwalled carbon nanotubes," Physical Review Letters, Vol. 86, pp.3128-3131, 2001. https://doi.org/10.1103/PhysRevLett.86.3128
  15. C. Li, E. T. Thostenson, and T.-W. Chou, "Sensors and actuators based on carbon nanotubes and their composites: A review," Composites Sci. Tech., Vol. 68, pp.1227-1249, 2008. https://doi.org/10.1016/j.compscitech.2008.01.006
  16. H. Ulbricht, G. Moos, and T. Hertel, "Interaction of C60 with carbon nanotubes and graphite," Physical Review Letters, Vol. 90, pp. 095501, 2003. https://doi.org/10.1103/PhysRevLett.90.095501
  17. K. Jensen, K. Kim, and A. Zettl, "An atomic-resolution nanomechanical mass sensor," Nature Nanotechnology, Vol. 3, pp. 533-537, 2008. https://doi.org/10.1038/nnano.2008.200
  18. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, "A tunable carbon nanotube electromechanical oscillator," Nature, Vol. 431, pp. 284-287, 2004. https://doi.org/10.1038/nature02905
  19. M. M. J. Treacy, T. W. Ebbesen, and T. M. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, Vol. 381, pp. 678-680, 1996. https://doi.org/10.1038/381678a0
  20. C. E. Guisca, Y. Tison, V. Stolojan, E. Borowiak-Palen, and S. R. P. Silva, "Inner-Tube chirality determination for double-walled carbon nanotubes by scanning tunneling microscopy," Nano Letters, Vol. 7, pp. 1232-1239, 2007. https://doi.org/10.1021/nl070072p
  21. S. L. Lair, W .C. Herndon, and L. E. Murr, "Stability comparison of simulated double-walled carbon nanotube structures, Carbon, Vol. 46, pp. 2083-2095, 2008. https://doi.org/10.1016/j.carbon.2008.08.022
  22. D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, Vol. 42, pp. 9458-9471, 1990. https://doi.org/10.1103/PhysRevB.42.9458
  23. 김종식, 김관하, 김창일, "촉매화학기상증착법에 의한 단일벽 탄소나노튜브의 합성과 미세구조", 대한전기학회 논문지, 제 55권, 제 7호, 359-363쪽, 2006년.
  24. 정승일, 이승백, "이중층 탄소나노튜브 전계전자 방출원의 신뢰성 있는 전계방출 특성", 한국진공학회지, 제 17권, 제 6호, 566-575쪽, 2008년. https://doi.org/10.5757/JKVS.2008.17.6.566