JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 1, March 2010

THE M_{α} -INTEGRAL

Jae Myung Park*, Hyung Won Ryu**, and Hoe Kyoung ${\rm Lee}^{***}$

ABSTRACT. In this paper, we define the M_{α} -integral and investigate properties of the M_{α} -integral.

1. Introduction and preliminaries

It is well-known [12] that a function $f : [a, b] \to R$ is *C*-integrable on [a, b] if and only if there exists an ACG_c function F such that F' = f almost everywhere on [a, b].

In this paper, we define the M_{α} -integral and prove that a function $f : [a, b] \to R$ is M_{α} -integrable on [a, b] if and only if there exists an ACG_{α} function F such that F' = f almost everywhere on [a, b].

Throughout this paper, $I_0 = [a, b]$ is a compact interval in R. Let D be a finite collection of interval-point pairs $\{(I_i, \xi_i)\}_{i=1}^n$, where $\{I_i\}_{i=1}^n$ are non-overlapping subintervals of I_0 and let δ be a positive function on I_0 , i.e. $\delta: I_0 \to R^+$. We say that $D = \{(I_i, \xi_i)\}_{i=1}^n$ is

(1) a partial tagged partition of I_0 if $\bigcup_{i=1}^n I_i \subset I_0$,

(2) a tagged partition of I_0 if $\bigcup_{i=1}^n I_i = I_0$,

(3) a δ -fine McShane partition of I_0 if $I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in I_o$ for all i = 1, 2, ..., n,

(4) a δ -fine M_{α} -partition of I_0 for a constant $\alpha > 0$ if it is a δ -fine McShane partition of I_0 and satisfying the

$$\sum_{i=1}^n dist(\xi_i, I_i) < \alpha,$$

where dist $(\xi_i, I_i) = inf\{|t - \xi_i| : t \in I_i\},\$

Received November 10, 2009; Accepted November 25, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 26A39.

Key words and phrases: M_{α} -partition, M_{α} -integral, ACG_{α} function.

Correspondence should be addressed to Jae Myung Park, parkjm@cnu.ac.kr.

(5) a δ -fine Henstock partition of I_0 if $\xi_i \in I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for all i = 1, 2, ..., n.

Given a δ -fine partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ we write

$$S(f,D) = \sum_{i=1}^{n} f(\xi_i) |I_i|$$

for integral sums over D, whenever $f: I_0 \to R$.

2. Properties of the M_{α} -integral

DEFINITION 2.1. Let $\alpha > 0$ be a constant. A function $f: I_0 \to R$ is M_{α} -integrable if there exists a real number A such that for each $\epsilon > 0$ there is a positive function $\delta: I_0 \to R^+$ such that

$$|S(f,D) - A| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of I_0 . A is called the M_{α} -integral of f on I_0 . and we write $A = \int_{I_0} f$ or $A = (M_{\alpha}) \int_{I_0} f$. The function f is M_{α} -integrable on the set $E \subset I_0$ if the function

 $f\chi_E$ is M_{α} -integrable on I_0 , and we write $\int_E f = \int_{I_0} f\chi_E$.

THEOREM 2.2. A function $f: I_0 \to R$ is M_{α} -integrable if and only if for each $\epsilon > 0$ there is a positive function $\delta : I_0 \to R^+$ such that

$$|S(f, D_1) - S(f, D_2)| < \epsilon$$

for any δ -fine M_{α} -partitions D_1 and D_2 of I_0 .

Proof. Assume that $f: I_0 \to R$ is M_{α} -integrable on I_0 . For each $\epsilon > 0$ there is a positive function $\delta : I_0 \to R^+$ such that

$$|S(f,D) - \int_{I_0} f| < \frac{\epsilon}{2}$$

for each δ -fine M_{α} -partition D of I_0 . If D_1 and D_2 are δ -fine M_{α} partitions, then

$$\begin{split} S(f, D_1) - S(f, D_2) &| \le |S(f, D_1) - \int_{I_0} f| + |\int_{I_0} f - S(f, D_2)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Conversely, assume that for each $\epsilon > 0$, there is a positive function $\delta: I_0 \to R^+$ such that $|S(f, D_m) - S(f, D_k)| < \epsilon$ for any δ -fine M_{α} partitions D_m , D_k of I_0 . For each $n \in N$, choose $\delta_n : I_0 \to R^+$ such

that $|S(f, D_1) - S(f, D_2)| < \frac{1}{n}$ for any δ_n -fine M_α -partitions D_1 and D_2 of I_0 . Assume that $\{\delta_n\}$ is decreasing. For each $n \in N$, let D_n be a δ_n -fine M_α -partition of I_0 . Then $\{S(f, D_n)\}$ is a Cauchy sequence. Let $L = \lim_{n \to \infty} S(f, D_n)$ and let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \frac{\epsilon}{2}$ and $|S(f, D_n) - L| < \frac{\epsilon}{2}$ for all $n \geq N$. Let D be a δ_N -fine M_α -partition of I_0 . Then

$$|S(f,D) - L| \le |S(f,D) - S(f,D_N)| + |S(f,D_N) - L|$$

$$< \frac{1}{N} + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence f is M_{α} -integrable on I_0 , and $\int_{I_0} f = L$.

We can easily get the following theorems.

THEOREM 2.3. Let $f: I_0 \to R$. Then

(1) If f is M_{α} -integrable on I_0 , then f is M_{α} -integrable on every subinterval of I_0 .

(2) If f is M_{α} -integrable on each of the intervals I_1 and I_2 , where I_1 and I_2 are non-overlapping and $I_1 \cup I_2 = I_0$, then f is M_{α} -integrable on I_0 and $\int_{I_1} f + \int_{I_2} f = \int_{I_0} f$.

THEOREM 2.4. Let f and g be M_{α} -integrable functions on I_0 . Then (1) kf is M_{α} -integrable on I_0 and $\int_{I_0} kf = k \int_{I_0} f$ for each $k \in R$, (2) f + g is M_{α} -integrable on I_0 and $\int_{I_0} (f + g) = \int_{I_0} f + \int_{I_0} g$.

LEMMA 2.5. (Saks-Henstock Lemma) Let $f : I_0 \to R$ be M_{α} -integrable on I_0 . Let $\epsilon > 0$. Suppose that δ is a positive function on I_0 such that

$$|S(f,D) - \int_{I_0} f| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{(I, \xi)\}$ of I_0 . If $D' = \{(I_i, \xi_i)\}_{i=1}^m$ is a δ -fine partial M_{α} -partition of I_0 , then

$$|S(f,D') - \sum_{i=1}^{m} \int_{I_i} f(\xi_i)| \le \epsilon.$$

Proof. Assume that $D' = \{(I_i, \xi_i)\}_{i=1}^m$ is an arbitrary δ -fine partial M_{α} -partition of I_0 . Let $\overline{I_0 - \cup_{i=1}^m I_i} = \bigcup_{j=1}^k I'_j$

Let $\eta > 0$. Since f is M_{α} -integrable on each I'_j , there exists a positive function $\delta_j : I'_j \to R^+$ such that

$$|S(f,D_j) - \int_{I'_j} f| < \frac{\eta}{k}.$$

101

for each δ_j -fine M_α -partition of I'_j .

Assume that $\delta_j(\xi) \leq \delta(\xi)$ for all $\xi \in D_0$. Let $D_0 = D' + D_1 + D_2 + \dots + D_k$. Then D_0 is a δ -fine M_{α} -partition of I_0 and we have

$$|S(f, D_0) - \int_{I_0} f| = |S(f, D') + \sum_{j=1}^k S(f, D_j) - \int_{I_0} f| < \epsilon.$$

Consequently, we obtain

$$\begin{split} |S(f,D') - \sum_{i=1}^{m} \int_{I_{i}} f| \\ &= |S(f,D_{0}) - \sum_{j=1}^{k} S(f,D_{j}) - (\int_{I_{0}} f - \sum_{j=1}^{k} \int_{I'_{j}} f)| \\ &\leq |S(f,D_{0}) - \int_{I_{0}} f| + \sum_{j=1}^{k} |S(f,D_{j}) - \int_{I'_{j}} f| \\ &< \epsilon + \frac{k\eta}{k} = \epsilon + \eta. \end{split}$$

Since $\eta > 0$ was arbitrary, we have $|S(f, D') - \sum_{i=1}^{m} \int_{I_i} f| \le \epsilon$.

Now we recall the definition of the derivative of a function.

DEFINITION 2.6. A function $F: I_0 \to R$ is differentiable at $\xi \in I_0$ if

$$\lim_{\mu \to 0} \frac{F(\xi + \mu) - F(\xi)}{\mu}$$

exists. The limit in case it exists, is called the derivative of F at ξ , and is denoted by $F'(\xi)$.

THEOREM 2.7. If the function $F: I_0 \to R$ is differentiable on I_0 with $f(\xi) = F'(\xi)$ for each $\xi \in I_0$, then $f: I_0 \to R$ is M_{α} -integrable.

Proof. By the definition of derivative, for each $\xi \in I_0$ there is a positive function $\delta: I_0 \to R^+$ such that

$$\left|\frac{F(\zeta) - F(\xi)}{\zeta - \xi} - f(\xi)\right| < \frac{\alpha}{2(\epsilon + |I_0|)}$$

for all $\zeta \in I_0$ with $|\zeta - \xi| < \delta(\xi)$. Assume that $D = \{(I_i, \xi_i)\}_{i=1}^n$ is a δ -fine M_{α} -partition of I_0 . Then we have

$$\left|\sum_{i=1}^{n} [f(\xi_i)|I_i| - F(I_i)]\right| \leq \sum_{i=1}^{n} |f(\xi_i)|I_i| - F(I_i)|$$
$$< \frac{\alpha}{\epsilon + |I_0|} \sum_{i=1}^{n} (dist(\xi_i, I_i) + |I_i|)$$
$$< \frac{\alpha}{\epsilon + |I_0|} (\alpha + |I_0|) = \epsilon$$

Hence $f: I_0 \to R$ is M_{α} -integrable on I_0 .

DEFINITION 2.8. Let $\alpha > 0$ be a constant. Let $F : I_0 \to R$ and let E be a subset of I_0 .

(a) F is said to be AC_{α} on E if for each $\epsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta : I_0 \to R^+$ such that $|\sum_i F(I_i)| < \epsilon$ for each δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}$ of I_0 satisfying $\xi_i \in E$ and $\sum_i |I_i| < \eta$.

(b) F is said to be ACG_{α} on E if E can be expressed as a countable union of sets on each of which F is AC_{α} .

By considering positive and negative parts, it is clear that there is no change if the part $|\sum_i F(I_i)| < \epsilon$ of the above definition is written as $\sum_i |F(I_i)| < \epsilon$.

THEOREM 2.9. If a function $f: I_0 \to R$ is M_{α} -integrable on I_0 with the primitive F, then F is ACG_{α} on I_0 .

Proof. By the definition of M_{α} -integral and the Saks-Henstock Lemma, for each $\epsilon > 0$ there is a positive function $\delta : I_0 \to R^+$ such that

$$\left|\sum_{i=1}^{n} [f(\xi_i)|I_i| - F(I_i)]\right| \le \epsilon$$

for each δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of I_0 .

Assume that $E_n = \{\xi \in I_0 : n - 1 \leq |f(\xi)| < n\}$ for each $n \in \mathbb{N}$. Then we have $I_0 = \bigcup E_n$. To show that F is AC_α on each E_n , fix n and take a δ -fine partial M_α -partition $D_0 = \{(I_i, \xi_i)\}$ of I_0 with $\xi_i \in E_n$ for

all *i*. If $\sum_i |I_i| < \frac{\epsilon}{n}$, then

$$\left|\sum_{i} F(I_{i})\right| \leq \left|\sum_{i} [F(I_{i}) - f(\xi_{i}) \cdot |I_{i}|]\right| + \left|\sum_{i} f(\xi_{i})|I_{i}|\right|$$
$$\leq \left|\sum_{i} [F(I_{i}) - f(\xi_{i})|I_{i}|]\right| + \sum_{i} |f(\xi_{i})| \cdot |I_{i}|$$
$$\leq \epsilon + n \sum_{i} |I_{i}| < 2\epsilon.$$

Now we recall the definitions of the McShane and Henstock integrals.

A function $f: I_0 \to R$ is McShane integrable if there exists a real number A such that for each $\epsilon > 0$ there is a positive function $\delta: I_0 \to R^+$ such that

$$S(f, D) - A| < \epsilon$$

for each δ -fine McShane partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of I_0 .

A function $f: I_0 \to R$ is Henstock integrable if there exists a real number A such that for each $\epsilon > 0$ there is a positive function $\delta: I_0 \to R^+$ such that

$$|S(f,D) - A| < \epsilon$$

for each δ -fine Henstock partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of I_0 .

Since every Henstock partition is an M_{α} -partition and every M_{α} -partition is a McShane partition, we get the following theorem.

THEOREM 2.10. Let $f: I_0 \to R$ be a function.

(a) If f is McShane integrable on I₀, then f is M_α-integrable on I₀.
(b) If f is M_α-integrable on I₀, then f is Henstock integrable on I₀.

A function $f : I_0 \to R$ is M_{α} -integrable on I_0 if and only if there exists on ACG_{α} function F on I_0 such that F' = f almost everywhere on I_0 . To prove this, we need the following two lemmas.

LEMMA 2.11. Suppose that $f : [a,b] \to R$ and let $E \subseteq [a,b]$. If $\mu(E) = 0$, then for each $\epsilon > 0$ there exists a positive function δ on E such that $S(|f|, D) < \epsilon$ for every δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a,b] with $\xi_i \in E$.

Proof. For each n, let $E_n = \{x \in E : n - 1 \leq |f(x)| < n\}$ and let $\epsilon > 0$. Then $E = \bigcup E_n$. Since $\mu(E_n) = 0$ for each n, we can choose an open set $O_n \supset E_n$ with $\mu(O_n) < \frac{\epsilon}{n \cdot 2^n}$.

Define $\delta(x) = \rho(x, O_n^c)$ for $x \in E_n$. Suppose that D is a δ -fine partial M_{α} -partition of [a, b]. Let D_n be a subset of D that has tags in E_n and let $\pi = \{n \in \mathbb{Z}^+ : D_n \neq \phi\}$. Then

$$S(|f|, D) = \sum_{n \in \pi} S(|f|, D_n) \le \sum_{n \in \pi} n \cdot |I_i|$$

$$< \sum_{n \in \pi} n \mu(O_n) < \sum_{n \in \pi} n \cdot \frac{\epsilon}{n \cdot 2^n} = \epsilon.$$

LEMMA 2.12. Suppose that $F : I_0 \to R$ is ACG_{α} on I_0 and let $E \subseteq I_0$. If $\mu(E) = 0$, then for each $\epsilon > 0$ there exists a positive function δ on E such that $\sum_{i=1}^n |F(I_i)| < \epsilon$ for every δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of I_0 with $\xi_i \in E$ for all i = 1, 2, ...n.

Proof. Let $E = \bigcup_{n=1}^{\infty} E_n$ where F is AC_{α} on each E_n . Let $\epsilon > 0$. For each n, there exists a positive function $\delta_n : E_n \to R^+$ and a positive number $\eta_n > 0$ such that $\sum_{i=1}^n |F(I_i)| < \frac{\epsilon}{2^n}$ for each δ_n -fine partial M_{α} partition of I_0 with $\xi_n \in E_n$ and $\sum_{i=1}^n |I_i| < \eta_n$. For each n, choose an open set $O_n \supset E_n$ and $\mu(O_n) < \eta_n$. Define $\delta(x) = \min\{\delta_n(x), \rho(x, O_n^c)\}$ for $x \in E_n$. Suppose that $D = \{(I_i, \xi_i)\}$ is a δ -fine partial M_{α} -partition of I_0 with $\xi_i \in E$. Let D_n be subset of D that has tags in E_n and note that $(D_n) \sum_{i=1}^n |I_i| < \mu(O_n) < \eta_n$. Hence,

$$\sum_{i=1}^{n} |F(I_i)| \le \sum_{n} (D_n) \sum_{i=1}^{n} |F(I_i)| < \sum_{n} \frac{\epsilon}{2^n} = \epsilon.$$

THEOREM 2.13. If a function $f : I_0 \to R$ is M_α -integrable on I_0 if and only if there is an ACG_α function F on I_0 such that F' = f almost everywhere on I_0 .

Proof. Suppose that f is M_{α} -integrable on I_0 and let $F(x) = \int_a^x f$ for each $x \in I_0$. Then by Theorem 2.9, F is ACG_{α} on I_0 . Since f is Henstock integrable on I_0 , F' = f almost everywhere on I_0 by [8, Theorem 9.12].

Conversely, suppose that there is an ACG_{α} function F such that F = f' almost everywhere on I_0 . Let $E = \{x \in I_0 : F'(x) \neq f(x)\}$ and let $\epsilon > 0$. Then $\mu(E) = 0$. For each $x \in I_0 - E$, choose $\delta(x) > 0$ such that

$$|F(y) - F(x) - f(x)(y - x)| < \frac{\epsilon}{6(\alpha + |I_0|)}|y - x|$$

whenever $|y - x| < \delta(x)$ and $y \in I_0$. By Lemma 2.11 and 2.12, we can find $\delta(x) > 0$ on E such that $|\sum f(\xi)|I_i|| < \frac{\epsilon}{3}$ and $|\sum F(I_i)| < \frac{\epsilon}{3}$, whenever $D = \{(I_i, \xi_i)\}$ is a δ -fine M_α -partial partition of I_0 with $\xi_i \in E$.

Suppose that $D = \{(I_i, \xi_i)\}$ is a δ -fine M_{α} -partial partition of I_0 . Let D_1 be the subset of D that has tags in E and let $D_2 = D - D_1$ then

$$\begin{split} \left| (D) \sum f(\xi) |I_i| - (D) \sum F(I_i) \right| \\ &= \left| (D_2) \sum f(\xi) |I_i| - (D_2) \sum F(I_i) \right| + \left| (D_1) \sum f(\xi) |I_i| \right| \\ &+ \left| (D_1) \sum F(I_i) \right| \\ &\leq (D_2) \sum |f(\xi)|I_i| - F(I_i)| + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &\leq \frac{\epsilon}{3(\alpha + |I_0|)} \sum (dist(\xi_i, I_i) + |I_i|) + \frac{2}{3}\epsilon \\ &\leq \frac{\epsilon}{3(\alpha + |I_0|)} (\alpha + |I_0|) + \frac{2}{3}\epsilon \\ &= \frac{\epsilon}{3} + \frac{2}{3}\epsilon = \epsilon. \end{split}$$

Hence f is M_{α} -integrable on I_0 .

The following examples show that the converse of Theorem 2.10 is not true.

EXAMPLE 2.14. (1) Let f be a function defined by

$$f(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0 \end{cases}$$

Then it is easy to show that the primitive of f is

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0 \end{cases}$$

Since F(x) is differentiable and F'(x) = f(x) everywhere on [0, 1], f(x) is M_{α} -integrable from Theorem 2.7. But F(x) is not absolutely continuous on [0, 1] and therefore f(x) is not McShane integrable on [0, 1].

(2) The function F defined by

$$F(x) = \begin{cases} x \sin \frac{1}{x^2} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable nearly everywhere on [0, 1]. By [8, Theorem 9.6], F' is Henstock integrable on [0, 1]. But we can show that F is not ACG_{α} on [0,1]. To show this, suppose that F is ACG_{α} . Then there exists a set $E \subset [0,1]$ such that $0 \in E$ and F is AC_{α} on E.

For $\epsilon = \frac{\alpha}{2}$, there exist a positive function $\delta : [0,1] \to R^+$ and a positive number $\eta > 0$ such that $|\sum_{i=1}^n F(I_i)| < \frac{\alpha}{2}$, whenever $D = \{(I_i, x_i)\}_{i=1}^n$ is a δ -fine partial M_{α} -partition of [0,1] with $x_i \in E$ and $\sum_{i=1}^n |I_i| < \eta$. Let $a_n = \frac{1}{\sqrt{(2n+\frac{1}{2})\pi}}$ and $b_n = \frac{1}{\sqrt{2n\pi}}$ for each positive integer n.

Then $a_n < b_n < 1$ and $\sum_{n=1}^{\infty} a_n = \infty$. Choose a δ -fine partial partition $D = \{([a_i, b_i], 0) : N \leq i \leq M\}$ such that $\frac{\alpha}{2} < \sum_{i=N}^{M} a_i < \alpha$ α and $b_N < min\{\delta(0), \eta\}$. Then $0 \in E$, $\sum_{i=N}^{M} (b_i - a_i) < \eta$, and $\sum_{i=N}^{M} dist(0, [a_i, b_i]) = \sum_{i=N}^{M} a_i < \alpha$.

Hence, D is a δ -fine M_{α} -partial partition of [0, 1]. But we have

$$\left|\sum_{i=N}^{M} F([a_i, b_i])\right| = \left|\sum_{i=N}^{M} \left(F(b_i) - F(a_i)\right)\right| = \sum_{i=N}^{M} a_i > \frac{\alpha}{2}.$$

This contradiction shows that F is not ACG_{α} on [0, 1]. Hence, F' is not M_{α} -integrable on [0, 1].

References

- [1] B. Bongiorno, Un nvovo interale il problema dell primitive, Le Matematiche, **51** (1996), no. 2, 299-313.
- [2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesque integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), no. 1, 117-126.
- [3] A. M. Bruckner, R. J. Fleissner, and J. Fordan, The minimal integral which includeds Lebesque integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293.
- [4] S. J. Chao, B. S. Lee, G. M. Lee, and D. S. Kim, Denjoy-type integrals of Banach-valued functions, Comm. Korean. Math. Soc. 13 (1998), no. 2, 307-316.
- [5] D. H. Fremlin The Henstock and McShane integrals of vector-valued functions, Illinois J. Math. 38 (1994), 471-479.
- [6] D. H. Fremlin The McShane, PU and Henstock integrals of Banach valued functions, Cze. J. Math. 52 (127) (2002), 609-633.
- [7] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127-147.
- R. A. Gordon, The Integrals of Lebegue, Denjoy, Perron, and Henstock, Graduate Studies in Math. 4, Amer. Math. Soc., 1994.

- [9] R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- [10] R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, 1991.
- [11] J. M. Park and D. H. Lee, The Denjoy extension of the Riemann and McShane integrals, Cze J. Math. 50 (2000), no. 125, 615-625.
- [12] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV, (2002), 143-153
- [13] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, 2005.
- [14] L. P. Yee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: slpm@nate.com

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: ghlrud98@nate.com