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THE Mα-INTEGRAL

Jae Myung Park*, Hyung Won Ryu**, and Hoe Kyoung
Lee***

Abstract. In this paper, we define the Mα-integral and investi-
gate properties of the Mα-integral.

1. Introduction and preliminaries

It is well-known [12] that a function f : [a, b] → R is C-integrable on
[a, b] if and only if there exists an ACGc function F such that F ′ = f
almost everywhere on [a, b].

In this paper, we define the Mα-integral and prove that a function
f : [a, b] → R is Mα-integrable on [a, b] if and only if there exists an
ACGα function F such that F ′ = f almost everywhere on [a, b].

Throughout this paper, I0 = [a, b] is a compact interval in R. Let D
be a finite collection of interval-point pairs {(Ii, ξi)}n

i=1, where {Ii}n
i=1

are non-overlapping subintervals of I0 and let δ be a positive function
on I0, i.e. δ : I0 → R+. We say that D = {(Ii, ξi)}n

i=1 is
(1) a partial tagged partition of I0 if ∪n

i=1Ii ⊂ I0,
(2) a tagged partition of I0 if ∪n

i=1Ii = I0,
(3) a δ-fine McShane partition of I0 if Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)) and

ξi ∈ Io for all i = 1, 2, ..., n ,
(4) a δ-fine Mα-partition of I0 for a constant α > 0 if it is a δ-fine

McShane partition of I0 and satisfying the
n∑

i=1

dist(ξi, Ii) < α,

where dist(ξi, Ii) = inf{|t− ξi| : t ∈ Ii},
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(5) a δ-fine Henstock partition of I0 if ξi ∈ Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi))
for all i = 1, 2, ..., n.

Given a δ−fine partition D = {(Ii, ξi)}n
i=1 we write

S(f,D) =
n∑

i=1

f(ξi)|Ii|

for integral sums over D, whenever f : I0 → R.

2. Properties of the Mα-integral

Definition 2.1. Let α > 0 be a constant. A function f : I0 → R is
Mα-integrable if there exists a real number A such that for each ε > 0
there is a positive function δ : I0 → R+ such that

|S(f,D)−A| < ε

for each δ−fine Mα-partition D = {(Ii, ξi)}n
i=1 of I0. A is called the

Mα-integral of f on I0. and we write A =
∫
I0

f or A = (Mα)
∫
I0

f .
The function f is Mα-integrable on the set E ⊂ I0 if the function

fχE is Mα-integrable on I0, and we write
∫
E f =

∫
I0

fχE .

Theorem 2.2. A function f : I0 → R is Mα-integrable if and only if
for each ε > 0 there is a positive function δ : I0 → R+ such that

|S(f,D1)− S(f,D2)| < ε

for any δ-fine Mα-partitions D1 and D2 of I0.

Proof. Assume that f : I0 → R is Mα-integrable on I0. For each
ε > 0 there is a positive function δ : I0 → R+ such that

|S(f,D)−
∫

I0

f | < ε

2

for each δ-fine Mα-partition D of I0. If D1 and D2 are δ-fine Mα-
partitions, then

|S(f,D1)− S(f,D2)| ≤ |S(f,D1)−
∫

I0

f |+ |
∫

I0

f − S(f,D2)|

<
ε

2
+

ε

2
= ε.

Conversely, assume that for each ε > 0, there is a positive function
δ : I0 → R+ such that |S(f,Dm) − S(f,Dk)| < ε for any δ-fine Mα-
partitions Dm, Dk of I0. For each n ∈ N , choose δn : I0 → R+ such
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that |S(f,D1)−S(f,D2)| < 1
n for any δn-fine Mα-partitions D1 and D2

of I0. Assume that {δn} is decreasing. For each n ∈ N , let Dn be a
δn-fine Mα-partition of I0. Then {S(f,Dn)} is a Cauchy sequence. Let
L = limn→∞S(f,Dn) and let ε > 0. Choose N such that 1

N < ε
2 and

|S(f,Dn) − L| < ε
2 for all n ≥ N . Let D be a δN -fine Mα-partition of

I0. Then
|S(f,D)− L| ≤ |S(f,D)− S(f,DN )|+ |S(f,DN )− L|

<
1
N

+
ε

2
<

ε

2
+

ε

2
= ε.

Hence f is Mα-integrable on I0, and
∫
I0

f = L. �

We can easily get the following theorems.

Theorem 2.3. Let f : I0 → R. Then
(1) If f is Mα-integrable on I0, then f is Mα-integrable on every

subinterval of I0.
(2) If f is Mα-integrable on each of the intervals I1 and I2, where I1

and I2 are non-overlapping and I1 ∪ I2 = I0, then f is Mα-integrable on
I0 and

∫
I1

f +
∫
I2

f =
∫
I0

f .

Theorem 2.4. Let f and g be Mα-integrable functions on I0. Then
(1) kf is Mα-integrable on I0 and

∫
I0

kf = k
∫
I0

f for each k ∈ R,

(2) f + g is Mα-integrable on I0 and
∫
I0

(f + g) =
∫
I0

f +
∫
I0

g.

Lemma 2.5. (Saks-Henstock Lemma) Let f : I0 → R be Mα-integrable
on I0. Let ε > 0. Suppose that δ is a positive function on I0 such that

|S(f,D)−
∫

I0

f | < ε

for each δ-fine Mα-partition D = {(I, ξ)} of I0. If D′ = {(Ii, ξi)}m
i=1 is a

δ-fine partial Mα-partition of I0, then

|S(f,D′)−
m∑

i=1

∫
Ii

f(ξi)| ≤ ε.

Proof. Assume that D′ = {(Ii, ξi)}m
i=1 is an arbitrary δ-fine partial

Mα-partition of I0. Let I0 − ∪m
i=1Ii = ∪k

j=1I
′
j

Let η > 0. Since f is Mα-integrable on each I ′j , there exists a positive
function δj : I ′j → R+ such that

|S(f,Dj)−
∫

I′
j

f | < η

k
.
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for each δj-fine Mα-partition of I ′j .
Assume that δj(ξ) ≤ δ(ξ) for all ξ ∈ D0. Let D0 = D′ + D1 + D2 +

... + Dk. Then D0 is a δ-fine Mα-partition of I0 and we have

|S(f,D0)−
∫

I0

f | = |S(f,D′) +
k∑

j=1

S(f,Dj)−
∫

I0

f | < ε.

Consequently, we obtain

|S(f,D′)−
m∑

i=1

∫
Ii

f |

= |S(f,D0)−
k∑

j=1

S(f,Dj)− (
∫

I0

f −
k∑

j=1

∫
I′
j

f)|

≤ |S(f,D0)−
∫

I0

f |+
k∑

j=1

|S(f,Dj)−
∫

I′
j

f |

< ε +
kη

k
= ε + η.

Since η > 0 was arbitrary, we have |S(f,D′)−
∑m

i=1

∫
Ii

f | ≤ ε. �

Now we recall the definition of the derivative of a function.

Definition 2.6. A function F : I0 → R is differentiable at ξ ∈ I0 if

lim
µ→0

F (ξ + µ)− F (ξ)
µ

exists. The limit in case it exists, is called the derivative of F at ξ, and
is denoted by F ′(ξ).

Theorem 2.7. If the function F : I0 → R is differentiable on I0 with
f(ξ) = F ′(ξ) for each ξ ∈ I0, then f : I0 → R is Mα-integrable.

Proof. By the definition of derivative, for each ξ ∈ I0 there is a posi-
tive function δ : I0 → R+ such that∣∣∣F (ζ)− F (ξ)

ζ − ξ
− f(ξ)

∣∣∣ <
α

2(ε + |I0|)
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for all ζ ∈ I0 with |ζ − ξ| < δ(ξ). Assume that D = {(Ii, ξi)}n
i=1 is a

δ-fine Mα-partition of I0. Then we have

∣∣∣ n∑
i=1

[f(ξi)|Ii| − F (Ii)]
∣∣∣ ≤ n∑

i=1

|f(ξi)|Ii| − F (Ii)|

<
α

ε + |I0|

n∑
i=1

(dist(ξi, Ii) + |Ii|)

<
α

ε + |I0|
(α + |I0|) = ε

Hence f : I0 → R is Mα-integrable on I0. �

Definition 2.8. Let α > 0 be a constant. Let F : I0 → R and let E
be a subset of I0.

(a) F is said to be ACα on E if for each ε > 0 there is a constant
η > 0 and a positive function δ : I0 → R+ such that |

∑
i F (Ii)| < ε for

each δ-fine partial Mα-partition D = {(Ii, ξi)} of I0 satisfying ξi ∈ E
and

∑
i |Ii| < η.

(b) F is said to be ACGα on E if E can be expressed as a countable
union of sets on each of which F is ACα.

By considering positive and negative parts, it is clear that there is no
change if the part |

∑
i F (Ii)| < ε of the above definition is written as∑

i |F (Ii)| < ε.

Theorem 2.9. If a function f : I0 → R is Mα-integrable on I0 with
the primitive F , then F is ACGα on I0.

Proof. By the definition of Mα-integral and the Saks-Henstock Lemma,
for each ε > 0 there is a positive function δ : I0 → R+ such that

∣∣∣ n∑
i=1

[f(ξi)|Ii| − F (Ii)]
∣∣∣ ≤ ε

for each δ-fine partial Mα-partition D = {(Ii, ξi)}n
i=1 of I0.

Assume that En = {ξ ∈ I0 : n − 1 ≤ |f(ξ)| < n} for each n ∈ N.
Then we have I0 = ∪En. To show that F is ACα on each En, fix n and
take a δ-fine partial Mα-partition D0 = {(Ii, ξi)} of I0 with ξi ∈ En for
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all i. If
∑

i |Ii| < ε
n , then∣∣∣ ∑

i

F (Ii)
∣∣∣ ≤ ∣∣∣ ∑

i

[F (Ii)− f(ξi) · |Ii|]
∣∣∣ +

∣∣∣ ∑
i

f(ξi)|Ii|
∣∣∣

≤
∣∣∣ ∑

i

[F (Ii)− f(ξi)|Ii|]
∣∣∣ +

∑
i

|f(ξi)| · |Ii|

≤ ε + n
∑

i

|Ii| < 2ε.

�

Now we recall the definitions of the McShane and Henstock integrals.
A function f : I0 → R is McShane integrable if there exists a real

number A such that for each ε > 0 there is a positive function δ : I0 →
R+ such that

|S(f,D)−A| < ε

for each δ-fine McShane partition D = {(Ii, ξi)}n
i=1 of I0.

A function f : I0 → R is Henstock integrable if there exists a real
number A such that for each ε > 0 there is a positive function δ : I0 →
R+ such that

|S(f,D)−A| < ε

for each δ-fine Henstock partition D = {(Ii, ξi)}n
i=1 of I0.

Since every Henstock partition is an Mα-partition and every Mα-
partition is a McShane partition, we get the following theorem.

Theorem 2.10. Let f : I0 → R be a function.
(a) If f is McShane integrable on I0, then f is Mα-integrable on I0.
(b) If f is Mα-integrable on I0, then f is Henstock integrable on I0.

A function f : I0 → R is Mα-integrable on I0 if and only if there
exists on ACGα function F on I0 such that F ′ = f almost everywhere
on I0. To prove this , we need the following two lemmas.

Lemma 2.11. Suppose that f : [a, b] → R and let E ⊆ [a, b]. If
µ(E) = 0, then for each ε > 0 there exists a positive function δ on E such
that S(|f |, D) < ε for every δ-fine partial Mα-partition D = {(Ii, ξi)}n

i=1
of [a, b] with ξi ∈ E.

Proof. For each n, let En = {x ∈ E : n − 1 ≤ |f(x)| < n} and let
ε > 0. Then E = ∪En. Since µ(En) = 0 for each n, we can choose an
open set On ⊃ En with µ(On) < ε

n·2n .
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Define δ(x) = ρ(x,On
c) for x ∈ En. Suppose that D is a δ-fine partial

Mα-partition of [a, b]. Let Dn be a subset of D that has tags in En and
let π = {n ∈ Z+ : Dn 6= φ}. Then

S(|f |, D) =
∑
n∈π

S(|f |, Dn) ≤
∑
n∈π

n · |Ii|

<
∑
n∈π

nµ(On) <
∑
n∈π

n · ε

n · 2n
= ε.

�

Lemma 2.12. Suppose that F : I0 → R is ACGα on I0 and let
E ⊆ I0. If µ(E) = 0, then for each ε > 0 there exists a positive function
δ on E such that

∑n
i=1 |F (Ii)| < ε for every δ-fine partial Mα-partition

D = {(Ii, ξi)}n
i=1 of I0 with ξi ∈ E for all i = 1, 2, ...n.

Proof. Let E = ∪∞n=1En where F is ACα on each En. Let ε > 0. For
each n, there exists a positive function δn : En → R+ and a positive
number ηn > 0 such that Σn

i=1|F (Ii)| < ε
2n for each δn-fine partial Mα-

partition of I0 with ξn ∈ En and
∑n

i=1 |Ii| < ηn. For each n, choose an
open set On ⊃ En and µ(On) < ηn. Define δ(x) = min{δn(x), ρ(x, On

c)}
for x ∈ En. Suppose that D = {(Ii, ξi)} is a δ-fine partial Mα-partition
of I0 with ξi ∈ E. Let Dn be subset of D that has tags in En and note
that (Dn)

∑n
i=1 |Ii| < µ(On) < ηn. Hence,
n∑

i=1

|F (Ii)| ≤
∑

n

(Dn)
n∑

i=1

|F (Ii)| <
∑

n

ε

2n
= ε.

�

Theorem 2.13. If a function f : I0 → R is Mα-integrable on I0 if
and only if there is an ACGα function F on I0 such that F ′ = f almost
everywhere on I0.

Proof. Suppose that f is Mα-integrable on I0 and let F (x) =
∫ x
a f

for each x ∈ I0. Then by Theorem 2.9, F is ACGα on I0. Since f
is Henstock integrable on I0, F ′ = f almost everywhere on I0 by [8,
Theorem 9.12].

Conversely, suppose that there is an ACGα function F such that
F = f ′ almost everywhere on I0. Let E = {x ∈ I0 : F ′(x) 6= f(x)} and
let ε > 0. Then µ(E) = 0. For each x ∈ I0 − E, choose δ(x) > 0 such
that

|F (y)− F (x)− f(x)(y − x)| < ε

6(α + |I0|)
|y − x|



106 Jae Myung Park, Hyung Won Ryu, and Hoe Kyoung Lee

whenever |y − x| < δ(x) and y ∈ I0. By Lemma 2.11 and 2.12, we
can find δ(x) > 0 on E such that |

∑
f(ξ)|Ii|| < ε

3 and |
∑

F (Ii)| < ε
3 ,

whenever D = {(Ii, ξi)} is a δ-fine Mα-partial partition of I0 with ξi ∈ E.
Suppose that D = {(Ii, ξi)} is a δ-fine Mα-partial partition of I0. Let

D1 be the subset of D that has tags in E and let D2 = D −D1 then∣∣∣(D)
∑

f(ξ)|Ii| − (D)
∑

F (Ii)
∣∣∣

=
∣∣∣(D2)

∑
f(ξ)|Ii| − (D2)

∑
F (Ii)

∣∣∣ +
∣∣∣(D1)

∑
f(ξ)|Ii|

∣∣∣
+

∣∣∣(D1)
∑

F (Ii)
∣∣∣

≤ (D2)
∑

|f(ξ)|Ii| − F (Ii)|+
ε

3
+

ε

3

≤ ε

3(α + |I0|)
∑

(dist(ξi, Ii) + |Ii|) +
2
3
ε

≤ ε

3(α + |I0|)
(α + |I0|) +

2
3
ε

=
ε

3
+

2
3
ε = ε.

Hence f is Mα-integrable on I0. �

The following examples show that the converse of Theorem 2.10 is
not true.

Example 2.14. (1) Let f be a function defined by

f(x) =

{
2x sin 1

x2 − 2
x cos 1

x2 if 0 < x ≤ 1,

0 if x = 0

Then it is easy to show that the primitive of f is

F (x) =

{
x2 sin 1

x2 if 0 < x ≤ 1,

0 if x = 0

Since F (x) is differentiable and F ′(x) = f(x) everywhere on [0, 1], f(x) is
Mα-integrable from Theorem 2.7. But F (x) is not absolutely continuous
on [0, 1] and therefore f(x) is not McShane integrable on [0, 1].

(2) The function F defined by

F (x) =

{
x sin 1

x2 if 0 < x ≤ 1,

0 if x = 0
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is differentiable nearly everywhere on [0, 1]. By [8,Theorem 9.6], F ′ is
Henstock integrable on [0, 1]. But we can show that F is not ACGα on
[0, 1]. To show this, suppose that F is ACGα. Then there exists a set
E ⊂ [0, 1] such that 0 ∈ E and F is ACα on E.

For ε = α
2 , there exist a positive function δ : [0, 1] → R+ and a

positive number η > 0 such that |
∑n

i=1 F (Ii)| < α
2 , whenever D =

{(Ii, xi)}n
i=1 is a δ-fine partial Mα-partition of [0, 1] with xi ∈ E and∑n

i=1 |Ii| < η.
Let an = 1√

(2n+ 1
2
)π

and bn = 1√
2nπ

for each positive integer n.

Then an < bn < 1 and
∑∞

n=1 an = ∞. Choose a δ-fine partial par-
tition D = {([ai, bi], 0) : N ≤ i ≤ M} such that α

2 <
∑M

i=N ai <

α and bN < min{δ(0), η}. Then 0 ∈ E,
∑M

i=N (bi − ai) < η, and∑M
i=N dist(0, [ai, bi]) =

∑M
i=N ai < α.

Hence, D is a δ-fine Mα-partial partition of [0, 1]. But we have∣∣∣ M∑
i=N

F ([ai, bi])
∣∣∣ =

∣∣∣ M∑
i=N

(
F (bi)− F (ai)

)∣∣∣ =
M∑

i=N

ai >
α

2
.

This contradiction shows that F is not ACGα on [0, 1].
Hence, F ′ is not Mα-integrable on [0, 1].
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