JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 1, March 2010

THE $\alpha\psi$ -CLOSURE AND THE $\alpha\psi$ -KERNEL VIA $\alpha\psi$ -OPEN SETS

Young Key Kim* and Devi Ramaswamy **

ABSTRACT. In this paper, we introduce the concept of weakly ultra- $\alpha\psi$ -separation of two sets in a topological space using $\alpha\psi$ -open sets. The $\alpha\psi$ -closure and the $\alpha\psi$ -kernel are defined in terms of this weakly ultra- $\alpha\psi$ -separation. We also investigate some of the properties of the $\alpha\psi$ -kernel and the $\alpha\psi$ -closure.

1. Introduction

The notion of $\alpha\psi$ -closed set was introduced and studied by R. Devi et al.[2]. In this paper, we define that a set A is weakly ultra- $\alpha\psi$ separated from B if there exists an $\alpha\psi$ -open set G containing A such that $G \cap B = \phi$. Using this concept, we define the $\alpha\psi$ -closure and the $\alpha\psi$ -kernel. Also we define the $\alpha\psi$ -derived set and the $\alpha\psi$ -shell of a set A of a topological space (X, τ) .

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned. Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

2. Preliminaries

Before entering to our work, we recall the following definitions, which are useful in the sequel.

DEFINITION 2.1. A subset A of a space (X, τ) is called

1. a semi-open set [4] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$ and

2000 Mathematics Subject Classification: Primary 54A05, 54D10.

Key words and phrases: $\alpha\psi$ -open sets, $\alpha\psi$ -kernel, $\alpha\psi$ -closure, weakly ultra- $\alpha\psi$ -separation.

Received September 28, 2009; Accepted January 18, 2010.

2. an α -open set [5] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$.

The semi-closure (resp. α -closure) of a subset A of a space (X, τ) is the intersection of all semi-closed (resp. α -closed) sets that contain A and is denoted by scl(A) (resp. $\alpha cl(A)$).

DEFINITION 2.2. A subset A of a topological space (X, τ) is called a

- 1. a semi-generalized closed (briefly sg-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set,
- 2. a ψ -closed set [6] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ) . The complement of ψ -closed set is called ψ -open set and
- 3. an $\alpha\psi$ -closed set [2] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in (X, τ) . The complement of $\alpha\psi$ -closed set is called $\alpha\psi$ -open
 set.

The $\alpha\psi$ -closure of a subset A of a space (X, τ) is the intersection of all $\alpha\psi$ -closed sets that contain A and is denoted by $\alpha\psi cl(A)$. The $\alpha\psi$ -interior of a subset A of a space (X, τ) is the union of all $\alpha\psi$ -open sets that are contained in A and is denoted by $\alpha\psi int(A)$. By $\alpha\psi O(X, \tau)$ or $\alpha\psi O(X)$, we denote the family of all $\alpha\psi$ -open sets of (X, τ) .

3. $\alpha\psi$ -kernel and $\alpha\psi$ -closure

DEFINITION 3.1. The intersection of all $\alpha\psi$ -open subsets of (X, τ) containing A is called the $\alpha\psi$ -kernel of A (briefly, $\alpha\psi$ -ker(A)).

i.e
$$\alpha \psi$$
-ker $(A) = \cap \{G \in \alpha \psi O(X) : A \subseteq G\}$

DEFINITION 3.2. Let $x \in X$. Then $\alpha \psi$ -kernel of x is denoted by $\alpha \psi$ -ker($\{x\}$) = $\cap \{G \in \alpha \psi O(X) : x \in G\}$.

DEFINITION 3.3. Let X be a topological space and $x \in X$, then a subset N_x of X is called an $\alpha\psi$ -neighbourhood (briefly, $\alpha\psi$ -nbd) of X if there exists an $\alpha\psi$ -open set G such that $x \in G \subseteq N_x$.

THEOREM 3.4. Let X be a topological space. Then for any nonempty subset A of X, $\alpha\psi$ -ker(A) = { $x \in X : \alpha\psi cl(\{x\}) \cap A \neq \phi$ }.

Proof. Let $x \in \alpha \psi$ -ker(A). Suppose that $\alpha \psi cl(\{x\}) \cap A = \phi$. Then $A \subseteq X - \alpha \psi cl(\{x\})$ and $X - \alpha \psi cl(\{x\})$ is $\alpha \psi$ -open set containing A but not x, which is a contradiction.

60

Conversely, let us assume that $x \notin \alpha \psi$ -ker(A) and $\alpha \psi cl(\{x\}) \cap A \neq \phi$. Then there exist an $\alpha \psi$ -open set D containing A but not x and a $y \in \alpha \psi cl(\{x\}) \cap A$.

Hence an $\alpha\psi$ -closed set X - D contains x, and $\{x\} \subset X - D, y \notin X - D$. This is a contradiction to $y \in \alpha\psi cl(\{x\}) \cap A$. Therefore $x \in \alpha\psi$ -ker(A).

DEFINITION 3.5. In a space X, a set A is said to be weakly ultra- $\alpha\psi$ -separated from a set B if there exists an $\alpha\psi$ -open set G such that $A \subseteq G$ and $G \cap B = \phi$ or $A \cap \alpha\psi cl(B) = \phi$.

By the definition 3.6 and the theorem 3.4, we have the following for $x, y \in X$ of a topological space,

- (i) $\alpha \psi$ -cl({x}) = {y : {x} is not weakly ultra- $\alpha \psi$ -separated from {x}} and
- (ii) $\alpha \psi$ -ker({x}) = {y : {y} is not weakly ultra- $\alpha \psi$ -separated from {y}}.

DEFINITION 3.6. For any point x of a space X,

(i) the $\alpha\psi$ -derived (briefly, $\alpha\psi$ -d({x})) set of x is defined to be the set

 $\begin{array}{l} \alpha\psi \text{-}d(\{x\}) = \alpha\psi \text{-}cl(\{x\}) - \{x\} = \{y : y \neq x \text{ and } \{y\} \text{ is not weakly-ultra-} \alpha\psi \text{-}separated from \{x\}\}, \end{array}$

(ii) the $\alpha\psi$ -shell (briefly, $\alpha\psi$ -shl({x})) of a singleton set {x} is defined to be the set

 $\begin{array}{l} \alpha\psi\text{-}shl(\{x\}) = \alpha\psi\text{-}ker(\{x\}) - \{x\} = \{y : y \neq x \text{ and } \{x\}\text{ is not weakly-ultra-}\alpha\psi\text{-}separated from \{y\}\}. \end{array}$

DEFINITION 3.7. Let X be a topological space. Then we define

(i) $\alpha \psi$ -N-D = { $x : x \in X \text{ and } \alpha \psi$ -d({x}) = ϕ },

(ii) $\alpha \psi$ -N-shl = { $x : x \in X$ and $\alpha \psi$ -shl({x}) = ϕ } and

(iii) $\alpha \psi \cdot \langle x \rangle = \alpha \psi \cdot cl(\{x\}) \cap \alpha \psi \cdot ker(\{x\}).$

THEOREM 3.8. Let $x, y \in X$. Then the following conditions hold.

- (i) $y \in \alpha \psi$ -ker({x}) if and only if $x \in \alpha \psi$ -cl({y}),
- (ii) $y \in \alpha \psi$ -shl({x}) if and only if $x \in \alpha \psi$ -d({y}),
- (iii) $y \in \alpha \psi$ -cl({x}) implies $\alpha \psi$ -cl({y}) $\subseteq \alpha \psi$ -cl({x}) and
- (iv) $y \in \alpha \psi$ -ker({x}) implies $\alpha \psi$ -ker({y}) $\subseteq \alpha \psi$ -ker({x}).

Proof. The proof of (i) and (ii) are obvious.

(*iii*) Let $z \in \alpha \psi$ -cl({y}). Then {z} is not weakly ultra- $\alpha \psi$ -separated from {y}. So there exists an $\alpha \psi$ -open set G containing z such that $G \cap \{y\} \neq \phi$. Hence $y \in G$ and by assumption $G \cap \{x\} \neq \phi$. Hence {z} is not weakly ultra- $\alpha \psi$ -separated from {x}. So $z \in \alpha \psi$ -cl({x}). Therefore $\alpha \psi$ - $cl(\{y\}) \subseteq \alpha \psi$ - $cl(\{x\})$.

(iv) Let $z \in \alpha \psi$ - ker({y}). Then {y} is not weakly ultra- $\alpha \psi$ -separated from $\{z\}$. So $y \in \alpha \psi - cl(\{z\})$. Hence $\alpha \psi - cl(\{y\}) \subseteq \alpha \psi - cl(\{z\})$. By assumption $y \in \alpha \psi$ -ker({x}) and then $x \in \alpha \psi$ -cl({y}). So $\alpha \psi$ -cl({x}) \subseteq $\alpha\psi$ -cl({y}). Ultimately $\alpha\psi$ -cl({x}) $\subseteq \alpha\psi$ -cl({z}). Hence $x \in \alpha\psi$ $cl(\{z\})$, that is $z \in \alpha \psi$ -ker $(\{x\})$. Therefore $\alpha \psi$ -ker $(\{y\}) \subseteq \alpha \psi$ -ker $(\{x\})$. \square

Let us recall that a subset A of X is called a degenerate set if A is either a null set or a singleton set.

THEOREM 3.9. Let $x, y \in X$. Then,

- (i) for every $x \in X$, $\alpha \psi$ -shl($\{x\}$) is degenerate if and only if for all $x, y \in X, x \neq y, \alpha \psi \cdot d(\{x\}) \cap \alpha \psi \cdot d(\{y\}) = \phi,$
- (ii) for every $x \in X$, $\alpha \psi$ -d($\{x\}$) is degenerate if and only if for every $x, y \in X, x \neq y, \alpha \psi$ -shl({x}) $\cap \alpha \psi$ -shl({y}) = ϕ .

Proof. Let $\alpha \psi - d(\{x\}) \cap \alpha \psi - d(\{y\}) \neq \phi$. Then there exists a $z \in X$ such that $z \in \alpha \psi - d(\{x\})$ and $z \in \alpha \psi - d(\{y\})$. Then $z \neq y \neq x$ and $z \in \alpha \psi$ -cl({x}) and $z \in \alpha \psi$ -cl({y}), that is $x, y \in \alpha \psi$ -ker({z}). Hence $\alpha \psi$ -ker({z}) and so $\alpha \psi$ -shl({z}) is not a degenerate set.

Conversely, let $x, y \in \alpha \psi$ -shl({z}). Then we get $x \neq z, x \in \alpha \psi$ $ker(\{z\})$ and $y \neq z$ and $y \in \alpha \psi$ - $ker(\{z\})$ and hence z is an element of both $\alpha \psi$ -cl({x}) and $\alpha \psi$ -cl({y}), which is a contradiction. The proof of (ii) is simple and hence omitted.

THEOREM 3.10. If $y \in \alpha \psi \cdot \langle x \rangle$, then $\alpha \psi \cdot \langle x \rangle = \alpha \psi \cdot \langle y \rangle$.

Proof. If $y \in \alpha \psi \cdot \langle x \rangle$, then $y \in \alpha \psi \cdot cl(\{x\}) \cap \alpha \psi \cdot ker(\{x\})$. Hence $y \in \alpha \psi$ -cl({x}) and $y \in \alpha \psi$ -ker({x}) and so we have $\alpha \psi$ -cl({y}) \subseteq $\alpha\psi$ -cl({x}) and $\alpha\psi$ -ker({y}) $\subseteq \alpha\psi$ -ker({x}). Then $\alpha\psi$ -cl({y}) $\cap \alpha\psi$ $ker(\{y\}) \subseteq \alpha \psi - cl(\{x\}) \cap \alpha \psi - ker(\{x\})$. Hence $\alpha \psi - \langle y \rangle \subseteq \alpha \psi - \langle x \rangle$. The fact that $y \in \alpha \psi - cl(\{x\})$ implies $x \in \alpha \psi - ker(\{y\})$ and $y \in \alpha \psi - ker(\{x\})$ implies $x \in \alpha \psi - cl(\{y\})$. Then we have that $\alpha \psi - \langle x \rangle \subseteq \alpha \psi - \langle y \rangle$. So $\alpha \psi - \langle y \rangle$. \square $\langle x \rangle = \alpha \psi \cdot \langle y \rangle.$

THEOREM 3.11. For all $x, y \in X$, either $\alpha \psi \cdot \langle x \rangle \cap \alpha \psi \cdot \langle y \rangle = \phi$ or $\alpha\psi \cdot \langle x \rangle = \alpha\psi \cdot \langle x \rangle.$

Proof. $\alpha \psi \langle x \rangle \cap \alpha \psi \langle y \rangle \neq \phi$, then there exists $z \in X$ such that $z \in X$ $\alpha\psi$ - $\langle x\rangle$ and $z \in \alpha\psi$ - $\langle y\rangle$. So by Theorem 3.11, $\alpha\psi$ - $\langle z\rangle = \alpha\psi$ - $\langle x\rangle = \alpha\psi$ - $\langle y \rangle$. Hence the result.

THEOREM 3.12. For any two points $x, y \in X$, the following statements are equivalent.

62

- (i) $\alpha \psi$ -ker({x}) $\neq \alpha \psi$ -ker({y}) and
- (ii) $\alpha \psi$ -cl({x}) $\neq \alpha \psi$ -cl({y}).

Proof. (i) \Longrightarrow (ii) Let us assume $\alpha\psi$ -ker({x}) $\neq \alpha\psi$ -ker({y}). Then there exists a $z \in \alpha\psi$ -ker({x}) but $z \notin \alpha\psi$ -ker({y}). As $z \in \alpha\psi$ ker({x}), $x \in \alpha\psi$ -cl({z}) and $\alpha\psi$ -cl({x}) $\subseteq \alpha\psi$ -cl({z}). Also we have taken $z \notin \alpha\psi$ -ker({y}), by Theorem 3.4, $\alpha\psi$ -cl({z}) \cap {y} = ϕ , so $\alpha\psi$ cl({x}) \cap {y} = ϕ and so {y} is weakly ultra- $\alpha\psi$ -separated from {x} and hence we get that $y \notin \alpha\psi$ -cl({x}). Hence $\alpha\psi$ -cl({y}) $\neq \alpha\psi$ -cl({x}). (ii) \Longrightarrow (i) Suppose $\alpha\psi$ -cl({x}) $\neq \alpha\psi$ -cl({y}). Then there exists a point $z \in \alpha\psi$ -cl({x}) but $z \notin \alpha\psi$ -?cl({y}). So, we get an $\alpha\psi$ -open set containing z and x but not y. That is $y \notin \alpha\psi$ -ker({x}). Hence $\alpha\psi$ -ker({y}) $\neq \alpha\psi$ -ker({x}).

References

- P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), no. 3, 375-382.
- [2] R. Devi, A. Selvakumar and M. Parimala, $\alpha\psi$ -closed sets in Topological spaces (Submitted).
- [3] R. Devi and M. Parimala, On $\alpha\psi$ -US space (Submitted).
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [5] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [6] M. K. R. S. Veera kumar, Between semi-closed sets and semi-pre-closed sets, Rend. Istit. Mat. Univ. Trieste XXXII, (2000), 25-41.

*

Department of Mathematics Myongji University Kyunggi 449-728, Republic of Korea *E-mail*: ykkim@mju.ac.kr

**

Department of Mathematics Kongunadu Arts and Science College Coimabtore 641029, Tamil Nadu, India *E-mail*: devicebe@yahoo.com