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POISSON HOPF STRUCTURE INDUCED BY THE
UNIVERSAL ENVELOPING ALGEBRA OF A GRADED

LIE ALGEBRA

Sei-Qwon Oh* and Miran Park**

Abstract. Let G be an abelian group, α an antisymmetric bichar-
acter on G and g a (G, α)-Lie algebra. Here we give a complete proof
for that the associated graded algebra determined by a natural fil-
tration in the universal enveloping algebra U(g) is a (G, α)-Poisson
Hopf algebra.

1. Introduction

Let g be a (classical) Lie algebra and let U(g) be its universal en-
veloping algebra. Then U(g) has a filtration {Un}∞n=0, where Un is the
subspace spanned by monomials with length less than or equal to n.
Hence there exists an associated graded algebra

gr(U) =
∞⊕

n=0

(Un/Un−1), U−1 = 0.

By [2, 2.8.7], gr(U) is a Poisson algebra with Poisson bracket

{x, y} = xy − yx = [x, y]

for all x, y ∈ g, where x and y are the canonical images of x and y,
respectively. This arises the question that the associated graded algebra
determined by a natural filtration in the universal enveloping algebra
of a graded Lie algebra is a graded Poisson Hopf algebra. Here we
establishes that this is true.
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Let G be an abelian group, α an anti-symmetric bicharacter on G and
g a (G, α)-Lie algebra. There is known that the universal enveloping
algebra of Z-graded Lie algebra has a certain Hopf algebra structure.
But we do not find a complete proof for this fact. Here we give a
complete proof that the universal enveloping algebra U(g) of (G, α)-Lie
algebra g is a (G, α)-Hopf algebra. Next we find that the universal
enveloping algebra U(g) has a natural filtration determined by length
of monomials and give a complete proof for that its associated graded
algebra is a (G, α)-Poisson Hopf algebra.

We assume throughout the paper that k denotes a field of character-
istic zero and all vector spaces are over k.

2. Universal enveloping algebras of graded Lie algebras

2.1.

Let G be an abelian group and let α be an antisymmetric bicharacter
on G, that is, α : G × G −→ k× = k \ {0} is a map satisfying the
conditions

α(a, b) = α(b, a)−1, α(ab, c) = α(a, c)α(b, c)

for all a, b, c ∈ G. Recall the definition of (G, α)-Lie algebra. A G-graded
vector space g = ⊕

a∈G
ga is said to be a (G, α)-Lie algebra if there exists

a bilinear map

[·, ·] : g× g −→ g, (x, y) 7→ [x, y]

satisfying the following conditions
(i) [ga, gb] ⊆ gab. (G-gradation)
(ii) [x, y] = −α(a, b)[y, x] for x ∈ ga, y ∈ gb. (α-skew symmetry)
(iii) α(c, a)[x, [y, z]] + α(a, b)[y, [z, x]] + α(b, c)[z, [x, y]]=0 for all x ∈

ga, y ∈ gb, z ∈ gc. (α-Jacobi identity)
For each a ∈ G, an element x ∈ ga is said to be homogeneous of degree
a and we will write |x| = a for convenience.

Set
U(g) = T (g)/I,

where T (g) is the tensor algebra of g and I is the two-sided ideal of T (g)
generated by

x⊗ y − α(|x|, |y|)y ⊗ x− [x, y]
for all homogeneous elements x, y ∈ g. Then the algebra U(g), called
the universal enveloping algebra of g, is spanned by monomials which
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are products of finite homogeneous elements in g, called homogeneous
monomials of U(g). (See [1, 2.4].) Since each homogeneous monomial
has a degree induced from the degrees of homogeneous elements in g,
U(g) is a G-graded algebra.

Moreover each homogeneous monomial of U(g) has the length. De-
note by `(X) = n the length of the homogeneous monomial X =
x1x2 · · ·xn, where all xi are homogeneous elements of g.

2.2.

Recall the semidirect product A oα B for G-graded algebras A and
B. The semidirect product A oα B is the vector space A ⊗ B with
multiplication

(a⊗ b)(c⊗ d) = α(|b|, |c|)ac⊗ bd

for homogeneous elements a ∈ A and b ∈ B. Refer to [3, 1.7] for the
definition of (G, α)-Hopf algebra.

Theorem 2.1. Let g be a (G, α)-Lie algebra. Then its universal
enveloping algebra U(g) is a (G, α)-Hopf algebra. That is, U(g) satisfies
the following three conditions:

(i) There exists a G-graded algebra homomorphism

(2.1) ∆ : U(g) −→ U(g) oα U(g), x 7→ x⊗ 1 + 1⊗ x (x ∈ g)

such that

(∆⊗ 1)∆ = (1⊗∆)∆,

where U(g) oα [U(g) oα U(g)] is identified with [U(g) oα U(g)] oα U(g).
(ii) There exists a G-graded algebra homomorphism

(2.2) ε : U(g) −→ k, x 7→ 0 (x ∈ g)

such that ∑
ε(z′)z′′ = z,

∑
z′ε(z′′) = z

for all z ∈ U(g), where ∆(z) =
∑

z′ ⊗ z′′ and k has the trivial grading

ke = k, ka = 0

for all e 6= a ∈ G.
(iii) Denote by U(g)op

α the algebra U(g) with a new multiplication

x · y = α(|x|, |y|)yx

for any homogeneous monomials x, y ∈ U(g). Then there exists a G-
graded algebra homomorphism

(2.3) σ : U(g) −→ U(g)opα , x 7→ −x (x ∈ g)
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such that ∑
σ(z′)z′′ = ε(z)1,

∑
z′σ(z′′) = ε(z)1

for all z ∈ U(g), where ∆(z) =
∑

z′ ⊗ z′′.

Proof. (i) Since

∆(x)∆(y)− α(|x|, |y|)∆(y)∆(x)−∆([x, y]) = 0

for all homogeneous elements x, y ∈ g, there exists a G-graded algebra
homomorphism ∆ given in (1). Note that ∆⊗ 1 and 1⊗∆ are algebra
homomorphisms. Moreover

(∆⊗ 1)∆(x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = (1⊗∆)∆(x)

for all x ∈ g. Thus (∆⊗ 1)∆ = (1⊗∆)∆ since g generates U(g).
(ii) There exists an algebra homomorphism ε given in (2) since

ε(x)ε(y)− α(|x|, |y|)ε(y)ε(x)− ε([x, y]) = 0

for all homogeneous elements x, y ∈ g. For each homogeneous monomial
X = x1x2 · · ·xn in U(g), let ∆(X) =

∑
X ′ ⊗ X ′′. If `(X) = n = 1

then X = x1 and
∑

ε(X ′)X ′′ = x1 = X. Suppose that n > 1 and that∑
ε(Y ′)Y ′′ = Y for all homogeneous monomials Y with length less than

n. Since

∆(X) = ∆(Y )∆(xn) =
∑

(Y ′ ⊗ Y ′′)(xn ⊗ 1 + 1⊗ xn)

=
∑

α(|Y ′′|, |xn|)(Y ′xn)⊗ Y ′′ +
∑

Y ′ ⊗ (Y ′′xn),

where Y = x1x2 · · ·xn−1, we have∑
ε(X ′)X ′′ =

∑
ε(Y ′)(Y ′′xn) = Y xn = X

by the induction hypothesis. The other equation
∑

z′ε(z′′) = z is proved
similarly.

(iii) For homogeneous elements x, y ∈ g, we have

σ(x) · σ(y)− α(|x|, |y|)σ(y) · σ(x)− σ([x, y])

= α(|x|, |y|)yx− xy + [x, y]

= −(xy − α(|x|, |y|)yx− [x, y]) = 0.

Thus there exists a G-graded algebra homomorphism σ given in (3).
Continue the notation in the proof of (ii). If n = 1 then X = x1 and∑
σ(X ′)X ′′ = σ(x1) + x1 = 0 = ε(X)1. Suppose that n > 1 and that
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σ(Y ′)Y ′′ = ε(Y )1 for all homogeneous monomials Y with length less

than n. Then∑
σ(X ′)X ′′ =

∑
α(|Y ′′|, |xn|)σ(Y ′xn)Y ′′ +

∑
σ(Y ′)(Y ′′xn)

=
∑

α(|Y ′′|, |xn|)[σ(Y ′) · σ(xn)]Y ′′ +
∑

(σ(Y ′)Y ′′)xn

= −α(|Y |, |xn|)xn

∑
σ(Y ′)Y ′′ +

∑
(σ(Y ′)Y ′′)xn

= −α(|Y |, |xn|)xnε(Y ) + ε(Y )xn = 0 = ε(X)1

by the induction hypothesis. The other equation
∑

z′σ(z′′) = ε(z)1 is
proved similarly.

2.3.

Let g be a (G, α)-Lie algebra. Then its universal enveloping algebra
U(g) has a filtration U = {Ui | i = 0, 1, · · · } such that

U0 ⊆ U1 ⊆ U2 ⊆ · · · ,

where Un is the subspace spanned by all homogeneous monomials X with
length less than or equal to n. Suppose that the length of a homogeneous
monomial X is n. In the associated graded algebra

grU =
∞⊕

n=0

(Un/Un−1), U−1 = 0,

the canonical image X = X + Un−1 ∈ grU has a G-grading |X| induced
by that of g. Thus the algebra grU is a G-graded algebra.

2.4.

Theorem 2.2. The associated graded algebra grU is a (G, α)-Poisson
Hopf algebra with Poisson bracket

(2.4) {X,Y } = XY − α(|X|, |Y |)Y X

for all homogeneous monomials X, Y ∈ U(g). That is, grU is a (G, α)-
Hopf algebra such that there exists a bilinear map {·, ·} : grU× grU −→
grU, called the Poisson bracket, satisfying

(i) grU is a (G, α)-Lie algebra under the Poisson bracket {·, ·}.
(ii) {X,Y Z} = {X,Y }Z + α(|X|, |Y |)Y {X,Z} for all homogeneous

elements X,Y , Z ∈ grU. (α-Leibniz rule)
(iii) ∆({X,Y }) = {∆(X),∆(Y )} for all X,Y ∈ grU, where the bracket

{·, ·} in grU oα grU is given by

{X ⊗ Y ,Z ⊗W} = α(|Y |, |Z|)XZ ⊗{Y ,W}+ α(|Y |, |Z|){X,Z} ⊗ Y W
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for homogeneous elements X,Y , Z, W ∈ grU.

Proof. It is proved by using the length of homogeneous monomials in
U(g) that grU is a (G, α)-Hopf algebra with structure maps induced by
those of U(g). Since grU is a G-graded algebra, it is (G, α)-Lie algebra
with bracket (4). Moreover it is easy to see that (4) satisfies the α-
Leibniz rule

{X,Y Z} = {X,Y }Z + α(|X|, |Y |)Y {X,Z}

for all homogeneous monomials X, Y, Z ∈ U(g).
It remains to prove that

(2.5) ∆({X,Y }) = {∆(X),∆(Y )}

for all homogeneous monomials X, Y ∈ U(g). We proceed by induction
on `(X) + `(Y ) and simply write X for X for convenience. If Y = 1
then

∆({X, 1}) = 0 = {∆(X), 1⊗ 1} = {∆(X),∆(1)}.

If X = 1 then

∆({1, Y }) = −∆({Y, 1}) = 0 = {1⊗ 1,∆(Y )} = {∆(1),∆(Y )}.

If X = x and Y = y for some homogeneous elements x, y ∈ g then

∆({x, y}) = [x, y]⊗ 1 + 1⊗ [x, y]
{∆(x),∆(y)} = {x⊗ 1 + 1⊗ x, y ⊗ 1 + 1⊗ y} = [x, y]⊗ 1 + 1⊗ [x, y],

thus ∆({x, y}) = {∆(x),∆(y)}. Suppose that `(X) + `(Y ) > 2 and
that (5) is true for all homogeneous monomials Z,W such that `(Z) +
`(W ) < `(X)+`(Y ). Thus X = X1X2 for some homogeneous monomials
X1, X2 with `(X1) < `(X) and `(X2) < `(X), or Y = Y1Y2 for some
homogeneous monomials Y1, Y2 with `(Y1) < `(Y ) and `(Y2) < `(Y ). Let
Y = Y1Y2. We use the notation ∆(Z) =

∑
Z ′ ⊗ Z ′′ for a homogeneous
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monomial Z ∈ U(g). Then

∆({X, Y }) = ∆({X, Y1Y2})
= ∆({X, Y1})∆(Y2) + α(|X|, |Y1|)∆(Y1)∆({X, Y2})
= {∆(X),∆(Y1)}∆(Y2) + α(|X|, |Y1|)∆(Y1){∆(X),∆(Y2)}

=
∑

α(|X ′′|, |Y ′
1 |)(X ′Y ′

1 ⊗ {X ′′, Y ′′
1 })(Y ′

2 ⊗ Y ′′
2 )

+
∑

α(|X ′′|, |Y ′
1 |)({X ′, Y ′

1} ⊗X ′′Y ′′
1 )(Y ′

2 ⊗ Y ′′
2 )

+
∑

α(|X|, |Y1|)α(|X ′′|, |Y ′
2 |)(Y ′

1 ⊗ Y ′′
1 )(X ′Y ′

2 ⊗ {X ′′, Y ′′
2 })

+
∑

α(|X|, |Y1|)α(|X ′′|, |Y ′
2 |)(Y ′

1 ⊗ Y ′′
1 )({X ′, Y ′

2} ⊗X ′′Y ′′
2 )

=
∑

α(|X ′′|, |Y ′
1 |)α(|X ′′||Y ′′

1 |, |Y ′
2 |)X ′Y ′

1Y
′
2 ⊗ {X ′′, Y ′′

1 }Y ′′
2

+
∑

α(|X ′′|, |Y ′
1 |)α(|X ′′||Y ′′

1 |, |Y ′
2 |){X ′, Y ′

1}Y ′
2 ⊗X ′′Y ′′

1 Y ′′
2

+
∑

α(|X|, |Y1|)α(|X ′′|, |Y ′
2 |)α(|Y ′′

1 |, |X ′||Y ′
2 |)Y ′

1X
′Y ′

2 ⊗ Y ′′
1 {X ′′, Y ′′

2 }

+
∑

α(|X|, |Y1|)α(|X ′′|, |Y ′
2 |)α(|Y ′′

1 |, |X ′||Y ′
2 |)Y ′

1{X ′, Y ′
2} ⊗ Y ′′

1 X ′′Y ′′
2

by the induction hypothesis and

{∆(X),∆(Y )} = {∆(X),∆(Y1)∆(Y2)}

= {
∑

(X ′ ⊗X ′′),
∑

(Y ′
1 ⊗ Y ′′

1 )
∑

(Y ′
2 ⊗ Y ′′

2 )}

=
∑

α(|X ′′|, |Y ′
1 ||Y ′

2 |)α(|Y ′′
1 |, |Y ′

2 |)X ′Y ′
1Y

′
2 ⊗ {X ′′, Y ′′

1 }Y ′′
2

+
∑

α(|X ′′|, |Y ′
1 ||Y ′

2 |)α(|Y ′′
1 |, |Y ′

2 |){X ′, Y ′
1}Y ′

2 ⊗X ′′Y ′′
1 Y ′′

2

+
∑

α(|X ′′|, |Y ′
1 ||Y ′

2 |)α(|Y ′′
1 |, |Y ′

2 |)α(|X ′′
2 |, |Y ′′

1 |)X ′Y ′
1Y

′
2 ⊗ Y ′′

1 {X ′′, Y ′′
2 }

+
∑

α(|X ′′|, |Y ′
1 ||Y ′

2 |)α(|Y ′′
1 |, |Y ′

2 |)α(|X ′|, |Y ′
1 |)Y ′

1{X ′, Y ′
2} ⊗X ′′Y ′′

1 Y ′′
2 .

Thus ∆({X, Y }) = {∆(X),∆(Y )} for Y = Y1Y2. If X = X1X2 then

∆({X, Y }) = −α(|X|, |Y |)∆({Y, X}) = −α(|X|, |Y |){∆(Y ),∆(X)}

= −α(|X|, |Y |)
∑

α(|Y ′′|, |X ′|)(Y ′X ′ ⊗ {Y ′′, X ′′})

− α(|X|, |Y |)
∑

α(|Y ′′|, |X ′|)({Y ′, X ′} ⊗ Y ′′X ′′)

= {∆(X),∆(Y )}

by the case Y = Y1Y2. Hence (5) holds. This completes the proof.
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