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ON A GRONWALL-TYPE INEQUALITY ON TIME
SCALES

SunGg Kyu CHor* AND NamJip Koo**

ABSTRACT. In this paper we extend a differential inequality pre-
sented in Theorem 2.2 [6] to a dynamic inequality on time scales.

1. Introduction

The Gronwall inequalities play a very important role in the study of
the qualitative theory of differential and integral equations. Further-
more, they can be widely used to investigate stability properties for
solutions of differential and difference equations. See [1, 2, 3, 9, 10, 11]
for differential inequalities and difference inequalities.

The theory of time scales (closed subsets of R) was created by Hilger
[7] in order to unify the theories of differential equations and of difference
equations and in order to extend those theories to other kinds of the
so-called “dynamic equations”. The two main features of the calculus
on time scales are unification and extension of continuous and discrete
analysis.

Pachpatte [13, 14] obtained some general versions of Gronwall-Bellman
inequality. Oguntuase [12] established some generalizations of the in-
equalities obtained in [13]. However, there were some defects in the
proofs of Theorems 2.1 and 2.7 in [12]. Choi et al. [6] improved the
results of [12] and gave an application to boundedness of the solutions
of nonlinear integro-differential equations.

In this paper we extend a differential inequality presented in [6, Theo-
rem 2.2] to a dynamic inequality on time scales which unified differential
inequality and difference inequality.
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2. Preliminaries on time scales

We mention several foundational definitions about the calculus on
time scales in an excellent introductory text by Bohner and Peterson

[5].
DEFINITION 2.1. The functions o,p : T — T defined by
o(t)=inf{s €T : s>t}and p(t) =sup{s €T : s <t}
are called the jump operators.

The jump operators o and p allow the classification of points in T in
the following way:

DEFINITION 2.2. A non-maximal element ¢ € T is said to be right-
denseif o(t) = t, right-scattered if o(t) > t. Also, a non-minimal element
t € T is called left-dense if p(t) = t, left-scattered if p(t) < t.

DEFINITION 2.3. The function g : T — Ry defined by pu(t) = o(t) —t
is called the graininess function.

If T =R, then pu(t) = 0, and when T = hZ with a positive constant
h, we have u(t) = h.

DEFINITION 2.4. A function f : T — R is called differentiable at
t € T, with (delta) derivative f2(t) € R if given ¢ > 0 there exists a
neighborhood U of t such that, for all s € U,

(o) = f(s) = fEWD)]o(t) = ]| < elo(t) — 5.
If f: T — R is delta differentiable for every ¢t € T, then f is called
delta differentiable on T*.

If T =R, then

A .
fo0 = Eg% s—t
and if T = hZ, then
o LW =10 _ fath - 1)
p(t) h

DEFINITION 2.5. The function f: T — R is said to be rd-continuous
provided it is continuous at right-dense points in T and its left-sided
limits exist (finite) at left-dense points in T.

The set of rd-continuous functions f : T — R will be denoted by
Cra(T, R).
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DEFINITION 2.6. Let f € Ciq(T,R). Then g : T — R is called
the antiderivative of f on T if it is differentiable on T* and satisfies
g2 (t) = f(t) for t € T*. In this case, we define

/ f(5)As = g(t) - gla), tET.

REMARK 2.7. Let a,b € T and f € Cyq(T,R), and t € T".

(i) If T =R, then
b b
/ F(t)AL _/ F(t)dt

where the integral on the right is the usual Riemann integral from

calculus.
(ii) If T = hZ, where h > 0, then

b_
Si . f(kh)h ifa<b

b h
/ fAt=1{0 ifa=b
a b

~S L (k) ifa > b,
h

DEFINITION 2.8. We say that a function p : T — R is regressive
provided

1+ pu(t)p(t) #0 for all t € T"

holds. The set of all regressive and rd-continuous functions p : T — R
will be denoted by R(T,R).

We use the cylinder transformation to define a generalized exponen-
tial function for an arbitrary time scale T.

DEFINITION 2.9. pr € R(T,R), then we define the generalized expo-
nential function ey(t, s) by

p(t,s) = exp </ Eun) (P AT> for all s,t € T,

where £;,(z) is the cylinder transformation given by

Yog(1+2n) ifh>0
_Jn
() {z if h=0.

Here Log is the principal logarithm function.
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3. Main results

We give a linear version of the comparison theorem on time scales.

LEMMA 3.1. [5] Let y, f € Cq(T,R) and p € RT (T, R), i.e., p satisfies
1+ pu(t)p(t) > 0 for t € T. Suppose that
y2 (1) < p(y(t) + f(¢), t € T.
Then

y(t) < ylto)en(t: to) + /t et o () (AT, tET.

Now, the basic inequality for the unified Gronwall’s inequality is the
following;:

LEMMA 3.2. [5] Let y € Cyq(T,R),p € RT(T,R),p > 0 and o € R.
Then

t
y(t) < « —|—/ y(T)p(T)AT for allt € T
to
implies
y(t) < aep(t, to) for all t € T.
The continuous version of Lemma 3.2 was first proved by Bellman
[3], while the corresponding discrete version was due to Sugiyama [15,

Theorem 1.2.2].
We need the following Lemma to prove Theorem 3.4.

LEMMA 3.3. [4, Theorem 2.5] Let tg € T* and assume k: T x T — R
is continuous at (t,t), where t € T" with t > to. Also assume that k(t,-)
is rd-continuous on [tg, o(t)]. Suppose that for each € > 0 there exists a
neighborhood U of t, independent of T € [ty, o (t)], such that

\k(o(t),7) — k(s,7) — k2 (t,7)(o(t) — s)| < elo(t) — s| for all s € U,

where k't denotes the derivative of k with respect to the first variable.
Then

t
g () = [ K (tAT+ ko).,
to
t
where g(t) = [, k(t,T)Ar.
The following is our main theorem unified Theorem 2.2 in [6] and
Theorem 2.5 in [8].
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THEOREM 3.4. Suppose that u, f € Cq(T,R) are nonnegative func-
tions, and c is a nonnegative constant. Let k(t, s) be defined as in Lemma
3.3 such that k(o(t),t) and k*¢(t, s) are nonnegative and rd-continuous
functions for s,t € T with s <t. Then

u(t) <c+ tt f(s)u(s) + /s k(s,T)u(t)AT]As forallt € Top  (3.1)

to
implies

t
u(t) <c[l+ [ f(s)ep(s,to)As] for all t € Ty,
to

where p(t,to) = f(t) + k(o (t),t) + [; k*(t,s)As and To = [tg,00) N T.
Proof. Put v(t) by the right hand side of (3.1). Then for all ¢ € Ty

VAt = fut)+ f@) | kET)u()AT, v(ty) = ¢

to

< f(t)(v(t)—i—/ k(t, )v(T)AT). (3.2)

to
Let

t
m(t) = v(t) +/ k(t, T)v(T)AT, m(ty) = v(ty) = c.

to
From Lemma 3.3, we obtain

mA(t) = v2(t) + k(o(t), t)u(t) + / kAt (t, 7)o(T) AT

to

< f)ym(t) + k(o(t),t)m(t) +/ kAt (¢, T)ym(T) AT

to

< (F(t) + k(o(®),6) + / KA (1 1) ATYm(2). (3.3)

to
By Lemma 3.1, we get

m(t) < cep(t,to), t > to, (3.4)

where p(t,to) = f(t) + k(o(t),t) + ftto k2t(t, s)As. By substituting (3.4)
into (3.2) and then integrating it from ¢¢ to t, we have

v(t) < w(tg) +c t f(s)ep(s,to)As

= c[l1+ tf(s)ep(s,to)As], t > tp.
to
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Hence the proof is complete. ]
COROLLARY 3.5. Under the same assumptions of Theorem 3.4, then

u(t) < o+ : F($)[u(s) + / ks, )u(r) AT As for all £ € T,

to
implies

t
u(t) < cexp[ f(s)ep(s,to)As] for all t € Ty,

where p(t,to) = f(t )—i—k:( —i—ft kAt (t, s)As.

Letting k(t,s) = h(t)g(s) in Theorem 3.4, we obtain the following
corollary.

COROLLARY 3.6. Suppose that u, f, h,g € Cq(T,R) are nonnegative
functions, and ¢ is a nonnegative constant. Suppose that h™(t) exists
and is a nonnegative and rd-continuous function. Then

u(t) <c+ t f(s)[u(s) + h(s) /s g(T)u(r)AT]As for all t € Ty (3.5)

to
implies

t
u(t) < c[l+ f(s)ep(s,to)As] for all t € Ty,
to

where p(t,to) = f(t) + h(o(t))g(t) + h2(t) fto

REMARK 3.7. If T = R in Corollary 3.6, then Corollary 2.4 in [6] is
immediate consequence of Corollary 3.6 by using the facts of o(t) = ¢
and h2(t) = W' (t) for t € R.

COROLLARY 3.8. If we set k(t,s) = 0 in Theorem 3.4, then our esti-
mate reduces to Lemma 3.2 in Section 3.

Proof. 1t follows from Theorem 3.4 that we have
t
u(t) < I+ [ f(s)ep(s to)As]
to
c[l+ ey (s, to)\io]
= C€f(t,t0), t Z to,
since ef(to,t9) = 1 for all ¢y € T. O

The following results in [16, Theorem 1] and [4, Corollary 4.9] follow
from Theorem 3.4.
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COROLLARY 3.9. Under the same assumptions of Theorem 3.4 with
k(t,s) =d(s) for allt,s € T witht > s, then

u(t) <c+ tf(s)[u(s) + /s d(T)u(T)AT]As for all t € T
to to
implies

c[l+ /tf(s)eerd(s,to)As]

to
< cefqa(t, to) for all t € Ty.

u(t)

IN

If T=R in Theorem 3.4, then we obtain the following corollary as a
continuous version of Theorem 3.4.

COROLLARY 3.10. [6, Theorem 2.2] Let u(t), f(t) be nonnegative
functions in an interval I = [a,b], and ¢ be a nonnegative constant.
Suppose that k(t,s) and k(t,s) are nonnegative and continuous func-
tions for s,t € I. Then

u(t) <c+ t f(s)[u(s) + ts k(s, T)u(T)dr]ds,t > to (3.6)

implies

u(t) <14+ [ f(s) exp(/s p(T,to)dT)ds], t > tg
to

to
where p(1,ty) = f(1) + k(7,7) + ftTO kr(1,0)do.
Proof. If T =R, then we have

o(t) = t,
olste) = exp( [ @) +hrr)+ [ kelr)dollin)s = 7>
to to
Hence the proof is complete. O

COROLLARY 3.11. [8, Theorem 2.5] Let u(n),b(n) be nonnegative
sequences defined on Z(ng) and k(n,m), Apk(n,m) be a nonnegative
function for n,m € Z(ng) with n > m. Suppose that

n—1 s—1

u(n) <e+ > b(s)ul(s) + > k(s,T)u(r)], n € Z(n),

s=ng T=ng
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where c is a positive constant. Then we have

n—1
u(n) < c[l+ Z b(s)ep(s,no)]

n—1 s—1
= 1+ Z b(s) H (14 p(7))] for all n € Z(nyg),

where p(n,ng) = b(n) + k(n +1,n) + "2} Ank(n, 7).

T=to

Proof. When T = Z, we easily see that

s—1
ep(s,no) = exp( Y Log(l+p(7))
T=ng
s—1
= H (1+p(1)), s> 1> nyp.
T=ng
This completes the proof. O

The next well-known discrete Gronwall’s inequality follows from Corol-
lary 3.11 with k(n,m) = 0.

COROLLARY 3.12. Let u(n),b(n) be nonnegative sequences defined
on Z(ng). Suppose that

n—1
u(n) <c+ > b(s)u(s), n € Z(np),

s=ng

where c is a positive constant. Then we have

n—1
u(n) < e [T @+o(s)]
n—1
< cexp(z b(s)),n > ng.

s=ng
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Proof. From Corollary 3.11 with k(n, m) = 0, we have

u(n) < o1+ ) b(s)ey(s, no)]

s=ng
s—1
= +Zb I a+o())]
s=ng T=ng
n—1 s—1
= i+ Y AT b))
s=ng T=ng
= cH <cepob ), m > ng.
S=no S$=no
This completes the proof. O

We can obtain anther version of Theorem 3.4 without the differentiable
condition of k(t, s) with respect to the first variable.

THEOREM 3.13. Suppose that u, f € Cq(T,R) are nonnegative func-
tions, and c is a nonnegative constant. Assume that k(t, s) is a nonneg-
ative and rd-continuous function for s,t € T with s <t. Then

u(t) <c+ t f(s)u(s) + /S k(s, T)u(t)At]As forallt € Top  (3.7)
to to
implies
u(t) < ceq(t,to), t € To,
where q(t,to) = f(t)[1 —i—ft (t,s)As].

Proof. Put v(t) by the right hand side of (3.7). Then, for all ¢t € Ty,
we have

t
At = ﬂoww+ﬂw/"unﬂMﬂAav@w=c

to

gfw@w+/kmmmMﬂ

to

t
< 100+ [ Kerano,
to
since v(t) is nondecreasing. From Lemma 3.1, we obtain
’U(t) < ’U(to)eq(t to), t> to

where q(t,to) = f(t) 1+ft (t, 7)AT). Hence the proof is complete. []
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REMARK 3.14. The following statements hold:
(i) If T = R in Theorem 3.13, then

ut) < e+ [ 1@)uls) + /t (s, 7)u(r)dr]ds for all ¢ € R
implies
u(t) < cexp( t f(s)[1+ /ts k(s,T)dr]ds), t > to.

0

(ii) If T = Z in Theorem 3.13, then

t—1 s—1
u(t) <e+ Y f(s)u(s) + > ks, T)ulr)], t € Z(to)

s=to T=to
implies
t—1 s—1
u(t) < c[[a+FE)M+ D ks )
s=to T=to
t—1 s—1
< cexp(Y f()1+ D k(s, 7)), t > to.
s=to T=to
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