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ANALOGUE OF WIENER MEASURE OVER THE SETS
BOUNDED BY SECTIONALLY DIFFERENTIABLE

BARRIERS

Man Kyu Im*

Abstract. In this paper, we find the formula for the analogue of
Wiener measure over the subset of C[0, T ] bounded by the section-
ally differentiable functions, which is a generalization of Park and
Skoug’s results in [2].

1. Introduction

Let mw be the classical Wiener measure on C0[0, T ] with T > 0, the
space of all continuous functions x with x(0) = 0. From [6] and [7], we
can found the following equations ; for b ≥ 0,

mw({x in C0[0, T ]| sup
0≤t≤T

x(t) ≥ b})(1.1)

= 2mw({x in C0[0, T ]|x(T ) ≥ b})

= 2
∫ +∞

b/
√

T

1√
2π

e−
u2

2 du

and

mw({x in C0[0, T ]| sup
0≤t≤T

(x(t)− at) ≥ b})(1.2)

=
∫ +∞

(aT+b)/
√

T

1√
2π

e−
u2

2 du + e−2ab

∫ (aT−b)/
√

T

−∞

1√
2π

e−
u2

2 du.

In [1], Park and Paranjape gave the probability of sup0≤t≤T (W (t) −
f(t)) for a differentiable function f and for the standard Wiener process
{W (t)|t ≥ 0}.
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Recently, Ryu proved an equation which is a generalization of Park
and Paranjape’s result, as following theorem in [4].

Theorem 1.1. For 0 < t ≤ T , G(t) satisfies the following Volterra’s
integral equation of the second kind

G(t)(1.3)

= 2
∫ f(0)

−∞

( ∫ +∞

f(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

−2
∫ t

0
G(s)M(t, s)ds

where

M(t, s) =

{
∂
∂s

∫ (f(t)−f(s))/
√

t−s
−∞

1√
2π

e−
u2

2 du (0 ≤ s < t ≤ T )
0 (0 ≤ t ≤ s ≤ T )

.

Park and Skoug established formulas, generalizations of Park and
Paranjape’s work, for the Wiener integral of F (x) bounded by sectionally
continuous functions in [2]. In 2002, the author and Ryu presented the
definition and the theories of analogue of Wiener measure mϕ on C[0, T ],
the space of all continuous functions on [0, T ] in [3]. This measure is a
kind of generalization of standard Wiener measure. Indeed, if ϕ is the
Dirac measure δ0 at the origin in R, then mϕ is the classical Wiener
measure mw.

The main result of this paper is to find the analogue of Wiener mea-
sure mϕ of {x in C[0, T ]| sup0≤t≤T (x(t) − f(t)) ≥ 0} for a sectionally
differentiable function f on [0, T ].

Throughout in this paper,
∫ b
a f(u)du means the Henstock integral of

f .

2. Statement of the result and proof

Let ϕ be a complete probability measure on R and let mϕ be the
analogue of Wiener measure on C[0, T ] for a given measure ϕ.

From [3], we can find the following theorem.

Theorem 2.1. (The Wiener integration formula for analogue of
Wiener measure) If g : Rn+1 → C is a Borel measurable function, then
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the following equality holds.∫
C[a,b]

g(x(t0), x(t1), · · · , x(tn)) dωϕ(x)

∗=
∫

Rn+1

g(u0, u1, · · · , un)W (n + 1;~t;u0, u1, · · · , un)

d(
n∏

j=1

mL × ϕ)((u1, u2, · · · , un), u0)

where
∗= means that if one side exists then both sides exist and the two

values are equal.

In this note, ”a function f : [0, T ] → R is sectionally differentiable”
means that there is a partition 0 = t0 < t1 < · · · < tn = T such that f
is differentiable on each interval (ti−1, ti) and the limits limt→t−i

f(t)
and limt→t+i

f(t) exist for i = 1, 2, · · · , n, and f(0) = limt→0+ f(t)
and f(T ) = limt→T− f(t). Let SD[0, T ] be the space of sectionally
differentiable functions on [0, T ]. For f in SD[0, T ] with a partition
0 = t0 < t1 < · · · < tn = T , we let f∗(ti) = min{f(ti), limt→t−i

f(t),
limt→t+i

f(t)}, f∗(s) = 0 if s < 0, and f∗(s) = f(s) otherwise. For t in

[0, T ], we suppose the limit lims→t−
f(t)−f(s)√

t−s
exists and equals to 0.

For x in C[0, T ], let τ(x) be the first hitting time of the curve f in
SD[0, T ] by x, that is, x(τ(x)) = f(τ(x)). If x never hit the curve f , we
let τ(x) = +∞.

For f in SD[0, T ] with a partition 0 = t0 < t1 < · · · < tn = T , we let

U1(t, s) =
1√
2π

∫ (f∗(t)−f∗(s))/
√

t−s

−∞
e−

v2

2 dv(2.1)

for 0 ≤ s < t ≤ T ,

U2(t)(2.2)

=
1√

(2π)k−1

∫ (f∗(t1)−f∗(t0))/
√

t1−t0

−∞
· · ·∫ (f∗(tk−1)−f∗(tk−2))/

√
tk−1−tk−2

−∞
e−

∑k−1
j=1

v2
j
2 dvk−1dvk−2 · · · dv1

for 0 ≤ tk−1 < t < s ≤ T , and

U(t, s) =
{

1
2U2(t) for 0 ≤ tk−1 < t < s ≤ T
U1(t, s)U2(t) for 0 ≤ tk−1 < s < t ≤ T

.(2.3)
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Then U1, U2 and U are all bounded by 1.
Let G : R → R be a function defined by

G(t) =

 0 (t < 0)
mϕ(At) (0 ≤ t ≤ T )
mϕ(AT ) (T < t)

,

where

At(2.4)
= {x in C[0, T ]|x(0) < f∗(0), and for some i and for some s0

in (ti−1, ti] with s0 ≤ t, x(s0) ≥ f∗(s0)}
for t in [0, T ].

We have the following Lemma 2.2 by similar method of proof in [4].

Lemma 2.2. G is increasing continuous with G(0) = 0.

Lemma 2.3. ([4]) If 0 ≤ s < t ≤ T then τ(x) = s and x(t)− x(s) are
independent.

The following theorem is one of main theorems in this paper.

Theorem 2.4. For 0 < t ≤ T , G(t) satisfies the following Volterra’s
integral equation of the second kind

G(t)(2.5)

=
2

2− U2(t)

∫ f∗(0)

−∞

( ∫ +∞

f∗(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)

− 2
2− U2(t)

∫ t

0
G(s)

∂

∂s
U(t, s)ds.

Proof. For 0 < t ≤ T ,

G(t) = mϕ(At ∩ {x in C[0, T ]|x(t) ≥ f∗(t)})
+mϕ(At ∩ {x in C[0, T ]|x(t) < f∗(t)})

= mϕ({x in C[0, T ]|x(0) < f∗(0) and x(t) ≥ f∗(t)})
+mϕ({x in C[0, T ]|x(0) < f∗(0), x(t) < f∗(t), and

for some j and for some s0 in (tj−1, tj ] with s0 ≤ t,

x(s0) = f∗(s0)}).
Here,

mϕ({x in C[0, T ]|x(0) < f∗(0) and x(t) ≥ f∗(t)})(2.6)

=
∫ f∗(0)

−∞

( ∫ +∞

f∗(t)

1√
2πt

exp{−(u1 − u0)2)
2t

}du1

)
dϕ(u0)
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and

mϕ({x in C[0, T ]|x(0) < f∗(0), x(t) < f∗(t), and(2.7)
for some j and for some s0 in (tj−1, tj ] with s0 ≤ t,

x(s0) = f∗(s0)})
(1)
=

∫ t

0
Eϕ(x(tj) < f∗(tj), x(t) < f∗(t)|τ(x) = s)dG(s)

(2)
=

∫ t

0
Eϕ(x(tj)− x(tj−1) < f∗(tj)− f∗(tj−1),

x(t)− x(s) < f∗(t)− x(s)|τ(x) = s)dG(s)
(3)
=

∫ t

0
Eϕ(x(tj)− x(tj−1) < f∗(tj)− f∗(tj−1),

x(t)− x(s) < f∗(t)− x(s))dG(s)

(4)
=

∫ t

0

( ∫
C[0,T ]

k−1∏
j=1

χ{x in C[0,T ]|x(tj)−x(tj−1)<f∗(tj)−f∗(tj−1)}(x)

χ{x in C[0,T ]|x(t)−x(s)<f∗(t)−x(s)}(x)dmϕ(x)
)
dG(s)

=
∫ t

0

∫
R

∫
Rk+1

1√
(2π)k+1(t− s)(s− tk−1)

∏k−1
j=1(tj − tj−1)

k−1∏
j=1

χ(−∞,f∗(tj)−f∗(tj−1))(uj − uj−1)χ(−∞,f∗(t)−x(s))(uk+1 − uk)

exp{−(uk+1 − uk)2

2(t− s)
− (uk − uk−1)2

2(s− tk−1)
−

k−1∑
j=1

(uj − uj−1)2

2(tj − tj−1)
}

duk+1duk · · · du1dϕ(u0)dG(s)

(5)
=

∫ t

0

( 1√
(2π)k

∫ (f∗(t1)−f∗(t0))/
√

t1−t0

−∞
· · ·∫ (f∗(tk−1)−f∗(tk−2))/

√
tk−1−tk−2

−∞

∫ (f∗(t)−f∗(s))/
√

t−s

−∞

e−
v2
k+1
2

−
∑k−1

j=1

v2
j
2 dvk+1dvk−1dvk−2 · · · dv1

)
dG(s)

(6)
=

∫ t

0
U(t, s)dG(s)

(7)
= lim

s→t+
U(t, s) lim

s→t+
G(s)− lim

s→0−
U(t, s) lim

s→0−
G(s)

−
∫ t

0
G(s)dU(t, s)

(8)
=

1
2
U2(t)G(t)−

∫ t

0
G(s)

∂

∂s
U(t, s)ds,
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where j = 1, 2, · · · , k − 1 and s in (tk−1, tk]. Step (1) follows from
the basic properties of conditional expectation. From x(s) = f∗(s), we
have Step (2). By Lemma 2.3, we obtain Step (3). Using the Wiener
integration formula for analogue of Wiener measure, we can check Step
(4). Step (5) come from the change of variables theorem. We get Step
(6) by (2.3). And by the integration by part, we have Step (7). Since
lims→0− G(s) = G(0) = 0, we obtain Step (8).

Hence, from (2.6) and (2.7), we have the equality (2.5), as desired.

The equality (2.5) and the change of order of integration give

G(t)(2.8)

=
2

2− U2(t)

∫ f∗(0)

−∞

( ∫ +∞

f∗(t)

1√
2πt

exp{−(u1 − u0)2

2t
}du1

)
dϕ(u0)

− 4
2− U2(t)

∫ t

0

[ ∫ f∗(0)

−∞

( ∫ +∞

f∗(s)

1√
2πs

exp{−(u1 − u0)2

2s
}du1

)
dϕ(u0)

] ∂

∂s
U(t, s)ds

+
4

2− U2(t)

∫ t

0

( ∫ t

z

∂

∂z
U(s, z)

∂

∂s
U(t, s)ds

)
G(z)dz

if ∂
∂zU(s, z) ∂

∂sU(t, s)G(z) is integrable on {(s, z)|0 ≤ z < s ≤ t}.

By [4, 8], we have the following theorem.

Theorem 2.5. If
∫ t
z

∂
∂zU(s, z) ∂

∂sU(t, s)ds is square integrable on { (z,
t)|0 ≤ z < t ≤ T}, then the equation (2.5) has one and essentially only
one solution in the class L2. This solution is given by the formula

G(t)(2.9)

=
2

2− U2(t)

∫ f∗(0)

−∞

( ∫ +∞

f∗(t)

1√
2πt

exp{−(u1 − u0)2

2t
}du1

)
dϕ(u0)

+
∞∑

n=1

(−1)n 2n+1

2− U2(t)

∫ t

0

[ ∫ f∗(0)

−∞

( ∫ +∞

f∗(s)

1√
2πs

exp{−(u1 − u0)2

2s
}du1

)
dϕ(u0)

]
Hn(t, s)ds

where H1(t, s) = ∂
∂sU(t, s) and Hn+1(t, s) =

∫ t
s Hn(t, z)H1(z, s)dz.

Remark 2.6. For f in SD[0, T ] with a partition 0 = t0 < t1 < · · · <
tn = T , if τ(x) = s is in (t0, t1), then (2.5) and (1.3) are essentially same.
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Example 2.7. For f in SD[0, T ] with 0 < t1 < T , and f(0) =
lims→0+ f(s), f(t1) = lims→t−1

f(s) and lims→t−1
f(s) < lims→t+1

f(s), let

At = {x in C[0, T ]|f(0) < x(0), α− < x(t1) < α+ and τ(x) = s in [0, t]}

where α− = lims→t−1
f(s) and α+ = lims→t+1

f(s). Then

G(t)

=
2

2− U2(t)

∫ +∞

f(0)

( ∫ α+/
√

t1

α−/
√

t1

∫ +∞

f(t)/
√

t−t1

1
2π

exp{−1
2
(v2

1 + v2
2)}

dv2dv1

)
dϕ(v0)−

2
2− U2(t)

∫ t

0
G(s)

∂

∂s
U(t, s)ds

where

U(t, s) =
{

1
2U2(t) for 0 ≤ t1 < t < s ≤ T
U1(t, s)U2(t) for 0 ≤ t1 < s < t ≤ T

,

U1(t, s) =
1√
2π

∫ (f(t)−f(s))/
√

t−s

−∞
e−

v2

2 dv

for 0 ≤ s < t ≤ T and

U2(t) =
1√
2π

∫ +∞

f(0)

∫ (α+−v0)/
√

t1

(α−−v0)/
√

t1

e−
v2
1
2 dv1dϕ(v0)

for 0 < t1 < t < s ≤ T .
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