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ON THE C-NETS

Seung On Lee*, Young Jin Pi**, and Ji Hyun Oh***

Abstract. In this paper, we define the concept of a c-net and
study the convergence of c-nets. Also we show that a c-net in a
topological space X has a convergent sub-c-net if and only if X is
a Lindelöf space, if every Gδ set is open in X.

1. Introduction

It is well known [1, 3, 9] that the order structure plays the important
role in the study of various mathematical structures.

The concept of a net first introduced by E. H. Moore and H. L. Smith
in 1922([8]), is to generalize the notion of a sequence. They proved that
a topological space is Hausdorff if and only if each net in X converges
to at most one point. In this paper, we define the concept of a c-net
which is a special type of a net, and then study the relation between
topological spaces and the convergence of c-nets. We show that p ∈ S

′

if and only if there is a c-net (xα) −→ p ∈ X, where X is a topological
space, every Gδ set is open and S

′
is the derived set of S ⊆ X. Using

this, we show that if a c-net in a topological space X has a convergent
sub-c-net, then X is a Lindelöf space. Using c-nets, we show that if X
is a Lindelöf space and every Gδ set is open in X, then each c-net in X
has a convergent sub-c-net.

For a further development in this field we refer to [4, 6, 10]. For
terminologies not introduced in this paper, we refer to [2, 5, 7].
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2. Preliminaries

In this section, we introduce the concepts of preordered sets, partially
ordered sets and nets.

Definition 2.1. Let P be a nonempty set and ≺ be a relation in P .
Then (P,≺) is called a partially ordered set if ≺ satisfies the following
properties:

(1) ≺ is transitive in P .
(2) ≺ is reflexive in P .
(3) ≺ is antisymmetric in P .
If ≺ satisfies (1) and (2), then (P,≺) is called a preordered set.
In this thesis, a partially ordered set is called a poset, and a pre-

ordered set is called a preset.

Definition 2.2. Let D be a nonempty subset of a preset (P,≺).
Then D is called a directed set if ≺ satisfies the following property:

If a ∈ D and b ∈ D, then there exists c ∈ D such that a ≺ c and
b ≺ c.

Definition 2.3. Let X be a set. A net in X is a map c : (D,≺) −→
X, where (D,≺) is a directed set.

Definition 2.4. Let c : (D,≺) −→ X be a net in X.
If k : (D∗,≺∗) −→ D is a net and for each p ∈ D, there exists

p∗ ∈ D∗ with p∗ ≺∗ d∗ implies p ≺ k(d∗) (d∗ ∈ D∗), then the net
c ◦ k : (D∗,≺∗) −→ X is called a subnet of c.

Definition 2.5. Let X be a topological space and x : (D,≺) −→ X
be a net in X and p ∈ X. Then (xα) converges to p, denoted by
(xα) −→ p, if for each open neighborhood U of p, there exists an α0 ∈ D
such that for α0 ≺ α, xα = x(α) ∈ U .

Definition 2.6. Let (D,≺) be a directed set. A subset D∗ of D is
said to be a cofinal subset of D if for each d ∈ D, there exists d∗ ∈ D∗

with d ≺ d∗.

Theorem 2.7. Let X be a topological space and x : (D,≺) −→ X
be a net in X. Then

(a) If xα = x for each α ∈ D, then the net (xα) −→ x.
(b) If D∗ is a cofinal subset of D, then x : (D∗,≺) −→ X is a subnet

of x : (D,≺) −→ X.
(c) If the net (xα) −→ x, then every subnet of (xα) also converges to

p.
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(d) Let β ∈ D and Dβ = {α ∈ D : β ≺ α}, then x : (Dβ,≺) −→ X is
a subnet of x : (D,≺) −→ X.

Theorem 2.8. Let X be a topological space. Then p is a limit point
of a subset S of X if and only if there exists a net (xα) in S − {p} that
converges to p.

Theorem 2.9. A topological space is Hausdorff if and only if each
net converges to at most one point.

Theorem 2.10. Let X be a topological space. Then X is compact if
and only if each net (xα) in X has a convergent subnet.

3. The convergence of c-nets

In this section, we introduce the concept of c-nets, and then we com-
pare the properties of sequences, nets and c-nets.

Definition 3.1. Let D be a nonempty subset of a preset (P,≺).
Then (D,≺) is called a countably directed set if ≺ satisfies the following
property :
If an ∈ D for each n ∈ K, where K is a countable set, then there exists
b ∈ D with an ≺ b. That is, every countable subset of D has an upper
bound in D.

Example 3.2. (1) Let (X, T ) be a topological space and F be a
collection of all closed subsets of X. Then (T ,⊆) and (F ,⊆)
are countably directed sets since X is an upper bound of every
countable subset D of T (F , resp.).

(2) Let (X, T ) be a topological space, x ∈ X and Nx be the neighbor-
hood system of x. Then (Nx,⊆) is a countably directed set since
X is an upper bound of every countable subset D of Nx.

(3) Suppose that X is a nonempty set and F is a nonempty collection
of nonempty subsets of X and
(a) if A ∈ F and B ∈ F , then A ∩B ∈ F and
(b) if A ∈ F , then each subset of X that contains A is also an

element of F .
Then F is called a filter in X. If F is a filter in X, then (F ,⊆)

is a countably directed set since X is an upper bound of every
countable subset D of F .

Remark 3.3. (1) If (D,≺) is a countably directed set, then (D,≺)
is a directed set.
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(2) The set of all natural numbers (N,≤) is directed but not countably
directed. But (N,≥) is countably directed.

(3) Let X be an infinite set. Then (Fin(X),⊆) is directed but not
countably directed, where Fin(X) = {A ⊆ X | A is finite}.
But (Count(X),⊆) is countably directed,
where Count(X) = {B ⊆ X | B is countable}.

(4) Let [a, b] be a closed interval in R. By a partition of [a, b], we mean
a finite set of points {x0, x1, · · · , xn} and
a = x0 < x1 < x2 < · · · < xn = b. Let P[a, b] be the collec-
tion of all partitions of [a, b]. Then (P[a, b],⊆) is directed but not
countably directed.

Definition 3.4. Let X be a set. A c-net in X is a map
c : (D,≺) −→ X ,where (D,≺) is a countably directed set.

Analogous to the notation used for nets, if s : (D,≺) −→ X is a
c-net, then we shall write (sα) for s : (D,≺) −→ X.

Example 3.5. (1) Let f be a sequence in X, then f is not a c-net
by Remark 3.3- (2).

(2) Let c : (D,≺) −→ X be a c-net, then c is a net by Remark 3.3 -
(1).

(3) In general, a net need not be a sequence.
For example, c : (Fin(N),⊆) −→ N defined by,

c(K) =

{
the least element of K (if K 6= ∅)
1 (if K = ∅)

is a net but not a sequence.
(4) A net need not be a c-net by Remark 3.3-(2).
(5) A c-net is not a sequence.

For example, c : (Count(N),⊆) −→ N defined by,

c(K) =

{
the least element of K (if K 6= ∅)
1 (if K = ∅)

is a c-net but not a sequence.

Definition 3.6. Let c : (D,≺) −→ X be a c-net in X.
If k : (D∗,≺∗) −→ D is a c-net and p ∈ D, there exists p∗ ∈ D∗ with

p∗ ≺∗ d∗ implies p ≺ k(d∗) (d∗ ∈ D∗).
Then the c-net c ◦ k : (D∗,≺∗) −→ X is called a sub-c-net of c.

Example 3.7. (1) Let D∗ = {a, b, c, } and D = {1, 2}.
Define a relation a ≺∗ b ≺∗ c on D∗ and 1 ≺ 2 on D. Define

s∗ : (D∗,≺∗) −→ D by s∗(a) = 1, s∗(b) = 2, s∗(c) = 2 and
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s : (D,≺) −→ N by s(1) = 1, s(2) = 2, then s ◦ s∗ : D∗ −→ N is
a sub-c-net of s. But if we define s∗(a) = 1, s∗(b) = 2, s∗(c) = 1
and s(1) = 1, s(2) = 2, then s ◦ s∗ is not a sub-c-net of s, because
if s ◦ s∗ : D∗ −→ N is a sub-c-net of s, then for 2 ∈ D there exists
e ∈ D∗ and e ≺∗ d implies 2 ≺ s(d). But e ∈ D∗ does not exist.

(2) Let s be the c-net from (Count(N),⊆) to N defined by the example
3.5-(5), and s∗ be a c-net from (Count(N),⊆) to (Count(N),⊆) by
s∗(K) = K∪{p} for any p ∈ N. Then s◦s∗ : (Count(N),⊆) −→ N
is a sub-c-net of s. Let A ∈ Count(N) and {p} ⊆ A, then for
A ⊆ B, A ⊆ S∗(B) = B.

If A = ∅, then ∅ ⊆ s∗(B) = B ∪ {p}. If p 6∈ A 6= ∅ and A ⊆ B,
then A ⊆ s∗(B) = B ∪ {p}.
In all, s ◦ s∗ : (Count(N),⊆) −→ N is a sub-c-net of s.

(3) Let s be the c-net from (Count(N),⊆) to N defined by the example
3.5-(5) and s∗ be a c-net from (Count(N),⊆) to (Count(N),⊆) by
s∗(K) = N − K. Then s ◦ s∗ : (Count(N),⊆) −→ N is not a
sub-c-net of s. If s ◦ s∗ : (Count(N),⊆) −→ N is a sub-c-net of s,
then for any K ∈ Count(N), there exists P ∗ ∈ Count(N) and for
P ∗ ⊆ T , K ⊆ s∗(T ) = N − T . It is a contradiction, for T = N
implies K = ∅.

Example 3.8. Let c : (D,≺) −→ X be a c-net in X, then
c∗ : (D∗,≺∗) −→ X is a sub-c-net of c and c∗∗ : (D∗∗,≺∗∗) −→ X be a
sub-c-net of c∗. Then c∗∗ : (D∗∗,≺∗∗) −→ X is a sub-c-net of c.

Definition 3.9. Let X be a topological space, x : (D,≺) −→ X be a
c-net in X and p ∈ X. Then (xα) is said to converge to p if for each open
neighborhood U of p, there exists α0 ∈ D such that for α0 ≺ α ∈ D,
xα = x(α) ∈ U .

Example 3.10. (1) Let (D,≺) be a countably directed poset with
the largest element e and X be a topological space. Then every
c-net s : (D,≺) −→ X converges to s(e). If D is a preset, then
largest elements are not unique in general.

(2) Let T be the set of all triangles and B be a relation in T defined
by T1 B T2 if T1 and T2 are similar figures for T1, T2 ∈ T .
Then s : (T ,B) −→ (R,U), defined by s(T ) = area of T , is a
c-net in S which is not convergent to s(T ∗), where T ∗ is a largest
element of T and (R,U) is the real line with the usual topology.

Example 3.11. Let X be a co-countable space , i.e. , X is a space
endowed with the topology Cc = {X − G | G is countable } ∪ {∅},
x ∈ X. Let Nx be the neighborhood system of x. Then (Nx,⊇) is a
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countably directed set. For each U ∈ Nx, let x(U) ∈ U , then the c-net
x : (Nx,⊇) −→ X converges to x.

Definition 3.12. Suppose that (D,≺) is a countably directed set.
A subset D∗ of D is said to be a cofinal subset of D if for each d ∈ D,
there exists d∗ ∈ D∗ with d ≺ d∗.

Remark 3.13. Let (D,≺) be a countably directed set. If a subset
D∗ of D is a cofinal subset of D, then (D∗,≺) is a countably directed
set.

Theorem 3.14. Let X be a topological space and x : (D,≺) −→ X
be a c-net in X. Then we have the following :

(a) If xα = x for each α ∈ D, then the c-net (xα) converges to x.
(b) If D∗ is a cofinal subset of D, then x∗ : (D∗,≺) −→ X is a

sub-c-net of x.
(c) If the c-net (xα) converges to a point p, then every sub-c-net of

(xα) also converges to p.
(d) Let β ∈ D and Dβ = {α ∈ D : β ≺ α}. Then xβ : (Dβ ,≺) −→ X

is a sub-c-net of x.

Proof. (a) Take any open neighborhood U of x, then xα = x ∈ U
for all α ∈ D. Hence (xα) converges to x.

(b) The identity map i : (D∗,≺) −→ (D,≺) is a c-net by Remark
3.13. Since D∗ is a cofinal subset of D, for each p ∈ D, there
exists p∗ ∈ D∗ with p ≺ p∗. So p∗ ≺ d∗ implies p ≺ i(d∗). Hence
x∗ = x ◦ i : D∗ −→ X is a sub-c-net of x.

(c) Let k : (E,≺∗) −→ X be a sub-c-net of a c-net x, then there is
a c-net l : (E,≺∗) −→ D with k = x ◦ l and for each p ∈ E,
there exists p∗ ∈ E with p∗ ≺∗ d∗ implies p ≺ l(d∗). Take any
open neighborhood G of p. Then there exists α0 ∈ D such that
for α0 ≺ α, x(α) ∈ G. Then for the α0, there exists p0 ∈ E and
p0 ≺∗ d0 implies α0 ≺ l(d0). Hence there exists p0 ∈ E and kp ∈ G
for all p0 ≺∗ p.

(d) Take any γ ∈ D. Since D is countably directed, for γ, β ∈ D, there
exists δ ∈ D with γ, β ≺ δ. Thus δ ∈ Dβ and γ ≺ δ. Hence Dβ is
a cofinal subset of D. Thus xβ : (Dβ ,≺) −→ X is a sub-c-net of
x.

Lemma 3.15. Let X be a topological space, then the followings are
equivalent:
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(1) Every Gδ set in X is open, where Gδ set is a countable intersection
of open subsets of X.

(2) For any x ∈ X, (Nx,⊇) is a countably directed set, where Nx is
the neighborhood system of x.

Theorem 3.16. Let X be a topological space, p ∈ X and every Gδ

set is open. Then p is a limit point of a subset S of X if and only if
there is a c-net (xα) in S − {p} that converges to p.

Proof. Let Np be a neighborhood system of p. Then (Np,⊇) is a
countably directed set. Since p is a limit point of S, for any U ∈ Np,
U ∩ (S − {p}) 6= ∅. Let x : (Np,⊇) −→ S − {p} be a choice function.
Then (xU ) is a c-net in S − {p}. Take any V ∈ Np, then for V ⊇ U ,
xU = x(U) ∈ U ⊆ V . Hence (xU ) converges to p. Conversely, since
there is a c-net x : (D,≺) −→ S − {p} which converges to p, for any
U ∈ Np, there exists α0 ∈ D such that xα ∈ U for α0 ≺ α. So
U ∩ (S − {p}) 6= ∅. Hence p is a limit point of S.

Example 3.17. Let X be a co-countable spaces. Then p is a limit
point of a subset S of X if and only if there exists a c-net (xα) in S−{p}
that converges to p by the above Theorem 3.16.

Corollary 3.18. Let X be a topological space, p ∈ X and every Gδ

set is open. Then p is in the closure of S if and only if there is a c-net
(xα) in S that converges to p.

Every convergent sequence in a Hausdorff space has a unique limit.
Among first countable spaces those that are Hausdorff can be charac-
terized by this property, although general Hausdorff space can not be.

As we know, a topological space is Hausdorff if and only if each net
converges to at most one point ([5]). Since every c-net is a net, we have
the following :

Corollary 3.19. If a topological space X is Hausdorff then each
c-net in X converges to at most one point.

Theorem 3.20. Let X be a topological space. If a c-net (xα) in X
has a convergent sub-c-net, then X is a Lindelöf space.

Proof. Let F = {F : F is closed subset of X } has countable intersec-
tion property and F∗ = {

⋂
Count(F) : Count(F) ⊆ F}, then (F∗,⊇) is

a countably directed set. Define a c-net x : (F∗,≺) −→ X by x(F ) ∈ F ,
then there is a convergent sub-c-net x∗ = x ◦ k : (D,≺) −→ X. Suppose
that (x∗α) converges to p ∈ X. We complete the proof by showing that
p ∈

⋂
F .
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Suppose that p /∈
⋂
F , then there exists F0 ∈ F with p /∈ F0. Since

x∗ is a sub-c-net of x, there exists β0 ∈ D and for β0 ≺ β, F0 ⊇ k(β).
Note that X − F0 is an open neighborhood of p. Since (x∗α) converges
to p, there exists β1 ∈ D such that for β1 ≺ β, x∗(β) ∈ X − F0. Let
β2 = max{β0, β1}, then for β2 ≺ β, F0 ⊇ k(β) and x∗(β) = x(k(β)) ∈
X − F0 ⊆ X − k(β). It is a contradiction to x(k(β)) /∈ k(β). Thus,⋂
F 6= ∅, and hence X is a Lindelöf space.

Theorem 3.21. Let X be a topological space and every Gδ set is
open. If X is a Lindelöf space, then each c-net (xα) in X has a convergent
sub-c-net.

Proof. Suppose that X is a Lindelöf space. Let x : (D,≺) −→ X be
a c-net in X, Dβ = {x(α) : α ∈ D, β ≺ α} and F = {Dα : α ∈ D}.
Then F has countable intersection property, because for any Dαi ∈ D,
i ∈ K and K is countable, there exists α0 ∈ D such that αi ≺ α0 for all
i ∈ K since D is countably directed,. Then x(α0) ∈ Dαi for all i ∈ K.
So x(α0) ∈

⋂
i∈K Dαi and

⋂
i∈K Dαi 6= ∅. Since X is Lindelöf,

⋂
F 6= ∅.

Let p ∈
⋂
F and Np be the neighborhood system of p. For every

(U1, α1) and (U2, α2) in Np × D, let (U1, α1) � (U2, α2) if and only if
U1 ⊇ U2 and α1 ≺ α2. Then (Np × D,�) is a countably directed set.
Note that since p ∈

⋂
F , for any U ∈ Np and any α ∈ D, U ∩Dα 6= ∅.

So there exists x(γ) with α ≺ γ with x(γ) ∈ U ∩ Dα, because Dα =
{x(γ) : γ ∈ D, α ≺ γ}. Let k : (Np ×D,�) −→ D by k(U,α) = γ with
x(γ) ∈ U∩D(α). Since p ∈

⋂
F , we can choose a γ with x(γ) ∈ U∩D(α)

for every α ∈ D and every U ∈ Np. Thus, x∗ = x◦k : (Np×D,�) −→ X
is a sub-c-net of x, because for each α ∈ D, there exists (U,α) ∈ Np×D
such that for (U,α) � (V, β), α ≺ k(V, β). We complete the proof by
showing that (x∗(U,α)) converges to p. Take any Up ∈ Np, then there exists
α ∈ D such that x(α) ∈ Up ∩Dα0 for some α0 ∈ D and α0 ≺ α. Then
for (Up, α) � (V, β), x∗(V, β) ∈ V ∩Dβ ⊆ U ∩Dβ ⊆ Up.
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