A Development of Washoff Model for Suspended Solids in Urban Areas

도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발

  • Joo, Jingul (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jung, Donghwi (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Joonghoon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Park, Moojong (Department of Civil Engineering, Hanseo University)
  • 주진걸 (고려대학교 건축 사회환경공학부) ;
  • 정동휘 (고려대학교 건축 사회환경공학부) ;
  • 김중훈 (고려대학교 건축 사회환경공학부) ;
  • 박무종 (한서대학교 토목공학과)
  • Received : 2010.05.07
  • Accepted : 2010.07.30
  • Published : 2010.09.30

Abstract

Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

Keywords

References

  1. 강용태, 한상윤, 전종규(2007). 초기강우에 의한 공업지역내의 비점오염원 유출특성에 관한 연구. 한국수처리학회지, 15(1), pp. 59-68.
  2. 김석구, 김영임, 윤상린, 이용재, 김이호, 김종오(2004). 강우강도에 따른 노면유출수의 유출특성. 수질보전 한국물환경학회지, 20(5), pp. 494-499.
  3. 김이형, 강주현(2004a). 강우로 인해 고속도로로부터 유출되는 폐기물의 성상, 부하량 및 유출 특성. 수질보전 한국물환경학회지, 20(5), pp. 415-421.
  4. 김이형, 강주현(2004b). 강우시 발생하는 고속도로 유출수의 초기우수 특성 및 기준. 수질보전 한국물환경학회지, 20(6), pp. 641-646.
  5. 노성덕, 이대근, 전양근(2004). 도로상의 비점오염물질 저감을 위한 초기 우수유출수 처리에 관한 연구. 수질보전 한국물환경학회지, 20(5), pp. 525-533.
  6. 배덕효, 김형섭, 이종태, 김이현(2007). 중랑천 수문자료집 2006. FFC05-05, 도시홍수재해 관리기술 연구단기술보고서.
  7. 이준호, 조용진, 방기웅(2005). 강우시 도로유출수 수질특성 및 입경분포. 대한환경공학회지, 27(7), pp. 777-784.
  8. 최지용, 신창민(1997). 도시지역 비점오염원 관리방안 연구. 한국환경정책평가연구원.
  9. Alley, W. M. (1981). Estimation of impervious-area washoff parameters. Water Resources Research, 17(4), pp. 1161-1166. https://doi.org/10.1029/WR017i004p01161
  10. Calabro, P. S. (2004). Design storms and water quality control. Journal of Hydrologic Engineering, 9(1), pp. 28-34. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:1(28)
  11. Deletic, A., Maksimovic, C., and Ivetic, M. (1997). Modelling of storm wash-off of suspended solids from impervious surfaces. Journal of Hydraulic Research, 35(1), pp. 99-117. https://doi.org/10.1080/00221689709498646
  12. Egodawatta, P., Thomas, E., and Goonetilleke, A. (2007). Mathematical interpretation of pollutant washoff from urban road surfaces using simulated rainfall. Water Research, 41, pp. 3025-3031. https://doi.org/10.1016/j.watres.2007.03.037
  13. Elliott, A. H. and Trowsdale, S. A. (2007). A review of models for low impact urban stormwater drainage. Environmental Modeling & Software, 22, pp. 394-405. https://doi.org/10.1016/j.envsoft.2005.12.005
  14. Furumai, H., Balmer, H., and Boller, M. (2002). Dynamic behavior of suspended pollutants and panicle size distribution in highway runoff. Water Science and Technology, 46(11-12), pp. 413-418.
  15. Gobel, P., Dierkes, C., and Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91, pp. 26-42. https://doi.org/10.1016/j.jconhyd.2006.08.008
  16. Grotter, M. (1987). Runoff quality from a street with medium traffic loading. The Science of the Total Environment, 59, pp. 457-466. https://doi.org/10.1016/0048-9697(87)90469-4
  17. Hoffman, E. J., Mills, G. L., Latimer, J. S., and Quinn, J. G. (1984). Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters. Environmental Science and Technology, 18(8), pp. 580-587. https://doi.org/10.1021/es00126a003
  18. Lisle, I. G., Rose, C. W., Hogarth, W. L., Hairsine, P. B., Sanders, G. C., and Parlange, J. Y. (1998). Stochastic sediment transport in soil erosion. Journal of Hydrology, 204, pp. 217-230. https://doi.org/10.1016/S0022-1694(97)00123-6
  19. Liu, W. T., Huang, Y. F., and Gong, T. L. (2007). Stepwise cluster analysis methodology study for urban nonpoint source pollution in Los Angeles. Environmental Informatics Archives, 5, pp. 422-430.
  20. Moss, A. J., Walker, P. H., and Hulka, J. (1979). Raindrop-stimulated transportation in shallow water flows: an experimental study. Sedimentary Geology, 22, pp. 165-184. https://doi.org/10.1016/0037-0738(79)90051-4
  21. Nakamura, E. (1984). Factors affecting the removal rale of street Surface contaminants by overland flow. Journal of Research, 24, pp. 1-24.
  22. Pitt, R., Field, R., Lalor, M., and Brown. M. (1995). Urban stormwater toxic pollutants: assessment, sources and treat ability. Water Environmental Research, 67(3), pp. 260-275. https://doi.org/10.2175/106143095X131466
  23. Rose, C. W. (1985). Developments in soil erosion and deposition models. Advances in Soil Science, 2, pp. 1-63. https://doi.org/10.1007/978-1-4612-5088-3_1
  24. Rose, C. W., Hogarth, W. L., Sander, G., Lisle, I., Hairsine, P., and Parlange, J. Y. (1994). Modeling processes of soil erosion by water. Trends in Hydrology, 1, pp. 443-451.
  25. Sansalone, J. J., Koran, J. M., Smithson, J. A., and Buchberger, S. G. (1998). Physical characteristics of urban roadway solids transported during rain events. Journal of Environmental Engineering, 124(5), pp. 427-440. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:5(427)
  26. Sartor, J. D. and Boyd, G. B. (1972). Water pollution aspects of street surface contaminants. EPA-R2-72-081(NTIS PB-214408). Environmental Protection Agency, Washington. DC.
  27. Sartor, J, D., Boyd, G. B., and Agrdy, F. J. (1974). Water pollution aspects of street surface contaminants. Water Pollution Control Federation, 46(3), Part 1, pp, 458-467.
  28. Shaw, S. B., Waller, M. T., and Steenhuis, T. S. (2006). A physical model of particulate wash-off from rough impervious surfaces. Journal of Hydrology, 327, pp. 618-626. https://doi.org/10.1016/j.jhydrol.2006.01.024
  29. Soonthornnond, P., Christensen, E. R., Liu, Y., and Li, J. (2008), A washoff model for stormwater pollutants. Science of the Total Environment, 402, pp. 248-256. https://doi.org/10.1016/j.scitotenv.2008.04.036
  30. Tomanovic, A. and Maksimovic, C. (1996). Improved modelling of suspended solids discharge from asphalt surface during storm event. Water Science and Technology, 33(4-5), pp. 363-369. https://doi.org/10.1016/0273-1223(96)00253-3
  31. Zhang, W., Keller, A. A., and Wang, X. (2009). Analytical modeling of polycyclic aromatic hydrocarbon loading and transport via road runoff in an urban region of Beijing. China. Water Resources Research, 45, W01423. https://doi.org/10.1029/2008WR007004
  32. Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16, pp. 195-231. https://doi.org/10.1016/S1364-8152(00)00084-0