THE CLASSIFICATION OF SELF-DUAL CODES OF LENGTH 6 OVER \mathbb{Z}_{m} FOR SMALL m

Young Ho Park*

Abstract

In this article we study self-dual codes of length 6 over \mathbb{Z}_{m}. A classification of such codes for $m \leq 24$ is given. Main tool for the classification is the new double cosets decomposition method given in the recent article of the author.

1. Introduction

Let m, n be positive integers. A modular code C of length n over \mathbb{Z}_{m} is a \mathbb{Z}_{m}-submodule of \mathbb{Z}_{m}^{n}. For the generality and definitions of modular codes and their lifts, we refer to $[6,7,10,12,17]$. A code C with generator matrix G will be denoted by $C: G$.
\mathbb{Z}_{m}^{n} is equipped with the standard inner product defined by $x \cdot y=$ $\sum x_{i} y_{i}$ where $x=\left(x_{i}\right), y=\left(y_{i}\right)$. The dual code C^{\perp} of a code C of length n is defined by $C^{\perp}=\left\{x \in \mathbb{Z}_{m}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\} . C$ is called a self-dual code if $C=C^{\perp}$. Self-dual codes are an important class of linear codes and much work has been done towards the classification of self-dual codes. The main tool for the classification is the so called mass formula, which counts the number of self-dual codes over \mathbb{Z}_{m} of given length. See [10, 12] for generality or $[1,14,15]$ for recent results. Self-dual codes of moderate length over prime fields are classified for small primes by the effort of many authors $[2,3,9,11,13,19]$.

It is known, at least theoretically, that the classification of self-dual codes over a ring \mathbb{Z}_{m} can be done by the Chinese Remainder Theorem and the classification of self-dual codes over the rings $\mathbb{Z}_{p^{e}}$ where p is a prime [5]. However, it has not been pursued any further and has not been done in almost all cases. Recently, some result on classification of modular codes is obtained by a method based on a classification of m frames of unimodular lattices [8]. In [18], the author pursued the Chinese

[^0]Remainder Theorem to give an elementary classification method using double cosets decomposition and classified self-dual codes of length 4 and of length 8 over \mathbb{Z}_{m} for many m. In this article, we investigate classification problem of self-dual codes of length 6 over \mathbb{Z}_{m}, where $m \leq$ 24.

2. Chinese products and a classification method

The group S_{n} of symmetries on n letters acts on \mathbb{Z}_{m}^{n} by

$$
\left(c_{1}, c_{2}, \cdots, c_{n}\right) \sigma=\left(c_{\sigma(1)}, c_{\sigma(2)}, \cdots, c_{\sigma(n)}\right)
$$

Denote by p_{σ} the $n \times n$ permutation matrix corresponding to this action by σ, i,e., $p_{\sigma}=\left(e_{\sigma(1)}, e_{\sigma(2)}, \cdots, e_{\sigma(n)}\right)$, where e_{j} is the j th standard basis column vector. Let

$$
\mathbb{D}_{m}^{n}=\left\{\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) \mid \gamma_{i} \in \mathbb{Z}_{m}, \gamma_{i}^{2}=1\right\}
$$

An element $\gamma=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) \in \mathbb{D}_{m}^{n}$ acts on \mathbb{Z}_{m}^{n} by

$$
\left(c_{1}, c_{2}, \cdots, c_{n}\right) \gamma=\left(\gamma_{1} c_{1}, \gamma_{2} c_{2}, \cdots, \gamma_{n} c_{n}\right)
$$

Let \mathbb{T}_{m}^{n} be the group of all monomial transformations on \mathbb{Z}_{m}^{n} defined by

$$
\mathbb{T}_{m}^{n}=\left\{\gamma p_{\sigma} \mid \gamma \in \mathbb{D}_{m}^{n}, \sigma \in S_{n}\right\}
$$

Let \mathscr{S}_{m}^{n} be the set of all self-dual codes of length n over \mathbb{Z}_{m}. The group \mathbb{T}_{m}^{n} acts on \mathscr{S}_{m}^{n} by $C t=\{c t \mid c \in C\}$. Two self-dual codes C and C^{\prime} in \mathscr{S}_{m}^{n} are equivalent (denoted $C \sim C^{\prime}$) if there exists an element $t \in \mathbb{T}_{m}^{n}$ such that $C t=C^{\prime}$. The group of all automorphisms of C will be denoted by $\mathrm{Aut}_{\mathbb{T}_{m}^{n}}(C)$ or simply $\operatorname{Aut}(C)$ and the set of orbits or complete representatives will be denoted by $\mathscr{S}_{m}^{n} / \mathbb{T}_{m}^{n}$.

We will usually abuse the notations and simply write $\operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ by $\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ and p_{σ} by σ. Since $\mathbb{D}_{m}^{n} \cap S_{n}=\{I\}$, any element $t \in \mathbb{T}_{m}^{n}$ has a unique representation $t=\gamma \sigma$ for $\gamma \in \mathbb{D}_{m}^{n}$ and $\sigma \in S_{n} . \gamma$ will be called the sign of t, and σ will be called the permutation part of t. The $\operatorname{map} p: \mathbb{T}_{m}^{n} \rightarrow S_{n}, p(\gamma \sigma)=\sigma$ is a surjective homomorphism with kernel \mathbb{D}_{m}^{n}. Since what is important to us is the number $k=\left|\mathbb{D}_{m}^{n} \cap H\right|$ and the group $p(H)$ of permutations of H, we usually write

$$
\begin{equation*}
H=k \cdot p(H) \tag{2.1}
\end{equation*}
$$

When $H=\operatorname{Aut}(C)$ for some self-dual code C, then $p(H)$ will also be denoted simply by $p(C)$.

Now we discuss the Chinese products. See [18] for detail. For any divisor r of m we denote by $[\cdot]_{r}$ the natural projection $[\cdot]_{r}: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{r}$ defined by

$$
[c]_{r}=(c \bmod r) \in \mathbb{Z}_{r}
$$

Fix a decomposition $m=r s$ of m with $\operatorname{gcd}(r, s)=1$. The Chinese Remainder Theorem asserts that $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}, \quad c \mapsto\left([c]_{r},[c]_{s}\right)$ is an isomorphism. The inverse isomorphism is denoted by

$$
\begin{equation*}
\mathbb{Z}_{r} \times \mathbb{Z}_{s} \rightarrow \mathbb{Z}_{m}, \quad(a, b) \mapsto a \odot b \tag{2.2}
\end{equation*}
$$

$a \odot b$ will be called the Chinese product of a and b, and $c=[c]_{r} \odot[c]_{s}$ will be called the Chinese product decomposition of $c \in \mathbb{Z}_{m}$. Note that

$$
a \odot b+c \odot d=(a+c) \odot(b+d), \quad(a \odot b)(c \odot d)=(a c) \odot(b d)
$$

for $a, c \in \mathbb{Z}_{r}$ and $b, d \in \mathbb{Z}_{s}$. For any integer n, these isomorphisms are extended to isomorphisms between \mathbb{Z}_{m}^{n} and $\mathbb{Z}_{r}^{n} \times \mathbb{Z}_{s}^{n}$ in the natural way and use the same notations.

A code C of length n over \mathbb{Z}_{m} can be uniquely written as a Chinese product $C=[C]_{r} \odot[C]_{s}$, and conversely, two codes A of length n over \mathbb{Z}_{r} and B of length n over \mathbb{Z}_{s} uniquely determine a code $A \odot B$ over \mathbb{Z}_{m}.

We have two induced projections $[\cdot]_{r}$ mapping $t=\gamma \sigma \in \mathbb{T}_{m}^{n}$ onto $[t]_{r}=[\gamma]_{r} \sigma \in \mathbb{T}_{r}^{n}$ and $[\cdot]_{s}$ mapping $t=\gamma \sigma$ onto $[t]_{s}=[\gamma]_{s} \sigma \in \mathbb{T}_{s}^{n}$. Composed with these projections, \mathbb{T}_{m}^{n} also acts on \mathbb{Z}_{r}^{n} and \mathbb{Z}_{s}^{n} naturally, i.e., for $a \in \mathbb{Z}_{r}^{n}, b \in \mathbb{Z}_{s}^{n}$, at $:=a[t]_{r}$ and $b t:=b[t]_{s}$ so that $(a \odot b) t=$ at $\odot b t$. Therefore \mathbb{T}_{m}^{n} also acts on the sets \mathscr{S}_{r}^{n} and \mathscr{S}_{s}^{n} naturally as $(A \odot B) t=(A t) \odot(B t)$.

The stabilizer of $A \in \mathscr{S}_{r}^{n}$ (or $B \in \mathscr{S}_{s}^{n}$) in \mathbb{T}_{m}^{n} will be denoted by $\operatorname{Aut}_{\mathbb{T}_{m}^{n}}(A)$, i.e.,

$$
\operatorname{Aut}_{\mathbb{T}_{m}^{n}} A=\left\{\gamma \sigma \mid[\gamma]_{r} \sigma \in \operatorname{Aut}(A)\right\}
$$

The automorphism group of $A \odot B$ is described in the next theorem [18].

Theorem 2.1. Let A, B be self-dual codes over \mathbb{Z}_{r} and \mathbb{Z}_{s}, respectively. Then
(i) $\operatorname{Aut}_{\mathbb{T}_{m}^{n}}(A \odot B)=\operatorname{Aut}_{\mathbb{T}_{m}^{n}}(A) \cap \operatorname{Aut}_{\mathbb{T}_{m}^{n}}(B)$.
(ii) $p(A \odot B)=p(A) \cap p(B)$.

To classify self-dual codes over \mathbb{Z}_{m} with $m=r s$, we first break $\mathscr{S}_{m}^{n} / \mathbb{T}_{m}^{n}$ into small pieces. For $A \in \mathscr{S}_{r}^{n}, B \in \mathscr{S}_{s}^{n}$, let

$$
L E(A, B)=\left\{A^{\prime} \odot B^{\prime} \in \mathscr{S}_{r}^{n} \odot \mathscr{S}_{s}^{n} \mid A^{\prime} \sim A, B^{\prime} \sim B\right\}
$$

$A^{\prime} \odot B^{\prime}$ in $L E(A, B)$ is said to be locally equivalent to $A \odot B$. It is clear that $L E(A, B)$ is invariant under the action of \mathbb{T}_{m}^{n} and that

$$
\begin{equation*}
\mathscr{S}_{m}^{n} / \mathbb{T}_{m}^{n}=\coprod_{\substack{A \in \mathscr{S}^{n} n \\ B \in \mathscr{S}_{s}^{n} / \mathbb{T}_{s}}} L E(A, B) / \mathbb{T}_{m}^{n} . \quad \text { (disjoint union) } \tag{2.3}
\end{equation*}
$$

The main theorem of [18] tells us how to obtain the classification of self-dual codes over \mathbb{Z}_{m} using the double coset decomposition.

Theorem 2.2. Let $A \in \mathscr{S}_{r}^{n}, B \in \mathscr{S}_{s}^{n}$. The inequivalent codes in $L E(A, B)$ are given by $A \odot B \sigma_{i}$, where σ_{i} runs through the double coset representatives of S_{n} by $p(B)$ and $p(A)$.

Therefore, the classification of self-dual codes over \mathbb{Z}_{m} reduces to the classification of self-dual codes over \mathbb{Z}_{r} and \mathbb{Z}_{s}, and the double coset decompositions. For each pair A, B of codes from $\mathscr{S}_{r}^{n} / \mathbb{T}_{m}^{n}$ and $\mathscr{S}_{s}^{n} / \mathbb{T}_{m}^{n}$, respectively, we classify $L E(A, B)$ by starting with the double coset $p(B) p(A)$ and try to find distinct double cosets $p(B) \sigma_{2} p(A), p(B) \sigma_{3} p(A)$, $\cdots, p(B) \sigma_{k} p(A)$ until we reach the identity

$$
\begin{equation*}
\sum_{i=1}^{k}\left|p(B) \sigma_{i} p(A)\right|=n! \tag{2.4}
\end{equation*}
$$

which will be called the local mass formula. The local mass formula can be rephrased as

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{\left|\sigma_{i}^{-1} p(B) \sigma_{i} \cap p(A)\right|}=\frac{n!}{|p(B)||p(A)|} \tag{2.5}
\end{equation*}
$$

This equality ensures that we have all of inequivalent codes $A \odot B \sigma_{i}$, $1 \leq i \leq k$, in $L E(A, B)$. There is a case when the classification is trivial.

Corollary 2.3. Let $A \in \mathscr{S}_{r}^{n}, B \in \mathscr{S}_{s}^{n}$ with $p(B)=S_{n}$. Then all codes in $L E(A \odot B)$ are equivalent.

3. Known results on classification of self-dual codes of length 6

The following theorem is well-known.
Theorem 3.1. Let p be an odd prime. There exists a self-dual code of length n over \mathbb{Z}_{p} if and only if

$$
\left\{\begin{array}{lll}
2 \mid n, & \text { if } p \equiv 1 & (\bmod 4) \\
4 \mid n, & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

For codes over $\mathbb{Z}_{2^{m}}$, we have the following.
Theorem 3.2. (i) Suppose $m=2 k$ is even. Then the length 1 code C_{1} with generator matrix $\left(2^{k}\right)$ is a self-dual code over $\mathbb{Z}_{2^{m}}$. Therefore there exist self-dual codes of every length over $\mathbb{Z}_{2^{m}}$.
(ii) Suppose $m=2 k+1$ is odd. Then the code C_{2} with generator matrix

$$
\left(\begin{array}{cc}
2^{k} & 2^{k} \\
0 & 2^{k+1}
\end{array}\right)
$$

is a self-dual code of length 2 over $\mathbb{Z}_{2^{m}}$. Therefore, there exist self-dual codes of every even length over $\mathbb{Z}_{2^{m}}$.

Proof. Recall that C is self-dual code of length n over $\mathbb{Z}_{2^{m}}$ if and only if C is self-orthogonal and $|C|=2^{m n / 2}$. It is easy to check that C_{1} and C_{2} are self-orthogonal. Also $\left|C_{1}\right|=2^{m-k}=2^{k}=2^{m \cdot 1 / 2}$ and $\left|C_{2}\right|=2^{m-k}$. $2^{m-k-1}=2^{m}=2^{m \cdot 2 / 2}$. Thus C_{1} and C_{2} are self-orthogonal. Finally, we can get codes with desired length by taking the direct products $C_{i} \oplus$ $\cdots \oplus C_{i}$.

It is known that there is a unique inequivalent binary self-dual code of length 6 generated by

$$
\left(\begin{array}{lllll}
1 & 1 & & & \\
& & 1 & 1 & \\
& & & 1
\end{array}\right) .
$$

From these results and Chinese remainder theorem, we see that there is a self-dual code of length 6 over \mathbb{Z}_{m}, where $m \leq 24$ only if

$$
m=4,5,8,13,16,17,20
$$

For $m=4,5,8,13,17$ we have the following known results by several authors.

Theorem 3.3 ([3]). There are three inequivalent self-dual codes of length 6 over \mathbb{Z}_{4} as follows.

$$
\begin{aligned}
& C_{4,1}=D_{6}^{\oplus}:\left(\begin{array}{lllll}
1 & 1 & 1 & 3 & \\
1 & 1 & 1 & 1 & 3 \\
1 & 3 & 1 & 1 & 1
\end{array}\right) \\
& C_{4,2}=A_{1}^{2} \oplus D_{4}^{\oplus}:\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 2 & \\
& 2 & 2 & \\
& & & 2
\end{array}\right) \\
& C_{4,3}=A_{1}^{6}: \operatorname{diag}(2,2,2,2,2,2)
\end{aligned}
$$

Theorem 3.4 ([11]). There are two inequivalent self-dual codes of length 6 over \mathbb{Z}_{5} as follows.

$$
\begin{aligned}
& C_{5,1}:\left(\begin{array}{lllllll}
1 & 4 & 2 & 2 & & \\
2 & 2 & 4 & 2 & 2 \\
0 & & 1 & 4
\end{array}\right) \\
& C_{5,2}:\left(\begin{array}{lllll}
1 & 2 & & & \\
& & 1 & 2 & \\
& & & 2
\end{array}\right)
\end{aligned}
$$

Theorem 3.5 ([4]). There is a unique inequivalent self-dual code of length 6 over \mathbb{Z}_{8} generated by

$$
\left(\begin{array}{ll}
2 & 2 \\
4
\end{array}\right) \oplus\binom{2}{4} \oplus\binom{2}{4} .
$$

ThEOREM 3.6 ([2]). There are five inequivalent self-dual codes of length 6 over \mathbb{Z}_{13} and six over \mathbb{Z}_{17}.

The mass formula for self-dual codes over \mathbb{Z}_{16} is determined in [14]. However the classification has not been done yet. Except this case, codes over \mathbb{Z}_{20} remains to be classified.

4. Classification over \mathbb{Z}_{20}

First we give the groups of permutations of $C_{4, i}$ and $C_{5, j}$. Let H, K, L be subgroups of S_{6} as follows:

$$
\begin{aligned}
H & =\langle(12),(34),(3546)\rangle \\
K & =\text { the permutation group on }\{3,4,5,6\}, \\
L & =\langle(23564),(3546)\rangle
\end{aligned}
$$

Then we have that $|H|=16,|K|=4$! and $|L|=20$. By a computer search we obtain the following permutation groups.

THEOREM 4.1. The groups of permutations in the automorphism groups of $C_{4, i}$ and $C_{5, j}$ are given by

$$
\begin{aligned}
& p\left(C_{4,1}\right)=H \cup(13)(24) H \cup(15)(26) H, \\
& p\left(C_{4,2}\right)=K \cup(12) K, \\
& p\left(C_{4,3}\right)=S_{6}, \\
& p\left(C_{5,1}\right)=L \cup(12) L \cup(13) L \cup(14) L \cup(15) L \cup(16) L, \\
& p\left(C_{5,2}\right)=p\left(C_{4,1}\right)
\end{aligned}
$$

of order $48,48,720,120,48$ respectively.

To classify self-dual codes of length 6 over \mathbb{Z}_{20} using Theorem 2.2, we need to compute double cosets $p\left(C_{4, i}\right) \backslash S_{6} / p\left(C_{5, j}\right)$ for each i and j. By a help of a computer, we obtain our main result.

Theorem 4.2. There are 10 inequivalent self-dual codes of length 6 over \mathbb{Z}_{20} as follows:
(i) $C_{4,1} \odot C_{5,1}$ with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 9 & 17 & 7 & 0 & 0 \\
0 & 0 & 1 & 9 & 17 & 7 \\
17 & 7 & 0 & 0 & 1 & 9 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,0,3,8,303,1752,5933\}$.
(ii) $C_{4,1} \odot C_{5,1}(45)$ with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 9 & 17 & 15 & 12 & 0 \\
0 & 0 & 1 & 17 & 9 & 7 \\
17 & 7 & 0 & 16 & 5 & 9 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,0,3,8,303,1752,5933\}$.
(iii) $C_{4,1} \odot C_{5,2}$ with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 17 & 5 & 15 & 0 & 0 \\
0 & 0 & 1 & 17 & 5 & 15 \\
5 & 15 & 0 & 0 & 1 & 17 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,0,27,8,639,984,6341\}$
(iv) $C_{4,1} \odot C_{5,2}(45)$ with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 17 & 5 & 15 & 0 & 0 \\
0 & 0 & 1 & 5 & 17 & 15 \\
5 & 15 & 0 & 16 & 5 & 17 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,0,19,40,431,1336,617\}$.
(v) $C_{4,1} \odot C_{5,2}(23)(45)$ with generator matrix

$$
\left(\begin{array}{cccccc}
1 & 5 & 17 & 15 & 0 & 0 \\
0 & 16 & 5 & 5 & 17 & 15 \\
5 & 15 & 0 & 16 & 5 & 17 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,0,15,56,327,1512,6089\}$.
(vi) $C_{4,2} \odot C_{5,1}$ with generator matrix

$$
\left(\begin{array}{cccccc}
6 & 4 & 12 & 12 & 0 & 0 \\
0 & 10 & 16 & 4 & 12 & 12 \\
12 & 12 & 5 & 5 & 1 & 9 \\
0 & 0 & 0 & 10 & 0 & 10 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,2,7,12,527,2066,5385\}$.
(vii) $C_{4,2} \odot C_{5,2}$ with generator matrix

$$
\left(\begin{array}{cccccc}
6 & 12 & 0 & 0 & 0 & 0 \\
0 & 10 & 16 & 12 & 0 & 0 \\
0 & 0 & 5 & 5 & 1 & 17 \\
0 & 0 & 0 & 10 & 1 & 17 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,2,39,76,783,1234,5865\}$.
(viii) $C_{4,2} \odot C_{5,2}(23)$ with generator matrix

$$
\left(\begin{array}{cccccc}
6 & 0 & 12 & 0 & 0 & 0 \\
0 & 6 & 0 & 12 & 0 & 0 \\
0 & 0 & 5 & 5 & 1 & 17 \\
0 & 0 & 0 & 10 & 0 & 10 \\
0 & 0 & 0 & 0 & 10 & 10
\end{array}\right)
$$

and weight distribution $\{1,2,31,108,575,1586,5697\}$.
(ix) $C_{4,3} \odot C_{5,1}$ with generator matrix

$$
\left(\begin{array}{cccccc}
6 & 4 & 12 & 12 & 0 & 0 \\
0 & 10 & 16 & 4 & 12 & 12 \\
12 & 12 & 10 & 0 & 16 & 4 \\
0 & 0 & 0 & 10 & 0 & 0 \\
0 & 0 & 0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0 & 0 & 10
\end{array}\right)
$$

and weight distribution $\{1,6,15,20,975,2694,4289\}$.
(x) $C_{4,3} \odot C_{5,2}$ with generator matrix

$$
\left(\begin{array}{cccccc}
6 & 12 & 0 & 0 & 0 & 0 \\
0 & 10 & 16 & 12 & 0 & 0 \\
0 & 0 & 10 & 0 & 16 & 12 \\
0 & 0 & 0 & 10 & 0 & 0 \\
0 & 0 & 0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0 & 0 & 10
\end{array}\right)
$$

and weight distribution $\{1,6,63,212,1071,1734,4913\}$.
Proof. The generator matrices can be obtained using a method in [17] and then the weight distributions can be computed easily. For each pair (i, j), the double cosets decomposition $p\left(C_{4, i}\right) \backslash S_{6} / p\left(C_{5, j}\right)$ is computed by a computer. However, we may also prove the theorem using the local mass formula (2.5) as follows. Let $A=C_{4,1}, B=C_{5,1}$. We can show that $|p(A) \cap p(B)|=24$ and $|(45) p(A)(45) \cap p(B)|=12$. Since

$$
\frac{1}{24}+\frac{1}{12}=\frac{1}{8}=\frac{720}{48 \times 12}=\frac{6!}{|p(B)||p(A)|}
$$

we conclude that $L E\left(C_{4,1}, C_{5,1}\right)$ has two inequivalent codes $A \odot B$ and $A \odot B(45)$. For the remaining cases, we list the intersection numbers $\left|\sigma^{-1} p(A) \sigma \cap p(B)\right|$. In all cases, the intersection numbers are all distinct, so it is easy to check the local mass formula.

References

[1] J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$, Discrete Math. 308 (2009), 2984-3002.
[2] K. Betsumiya, S. Georgiou, T. A. Gulliver, M. Harada, C. Kououvinos, On self-dual codes over some prime fields, Discrete Math. 262 (2009), 37-58.
[3] J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A 62 (1993), 30-45.
[4] S. T. Dougherty, T. A. Gulliver and J. N. C. Wong, Self-dual codes over \mathbb{Z}_{8} and \mathbb{Z}_{9}, Des Codes Crypt 41 (2006), 235-249.

A	B	$\|p(A)\|$	$\|p(B)\|$	$A \odot B \sigma$	$\left\|\sigma^{-1} p(B) \sigma \cap p(A)\right\|$
$C_{4,1}$	$C_{5,1}$	48	120	$A \odot B$	24
				$A \odot B(45)$	12
$C_{4,1}$	$C_{5,2}$	48	48	$A \odot B$	48
				$A \odot B(45)$	8
				$A \odot B(23)(45)$	6
$C_{4,2}$	$C_{5,1}$	48	120	$A \odot B$	8
$C_{4,2}$	$C_{5,2}$	48	48	$A \odot B$	16
				$A \odot B(23)$	4
$C_{4,3}$	$C_{5,1}$	720	120	$A \odot B$	120
$C_{4,3}$	$C_{5,2}$	720	48	$A \odot B$	48

[5] S. T. Dougherty, M. Harada and P. Sole, Self-dual codes over rings and the Chinese Remainder Theorem, Hokkaido Math Journal 28 (1999), 253-283.
[6] S. T. Dougherty, S. Y. Kim and Y. H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123-135.
[7] S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65-80.
[8] M. Harada and A. Munemasa, On the classfication of self-dual \mathbb{Z}_{k}-codes, Lecture Notes in Computer Science 5921, (2009) 78-90.
[9] W. C. Huffman, On the classification and enumeration of self-dual codes, Finite fields and their applications, 11 (2005), 451-490.
10] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
[11] J. S. Leon, V. Pless and N. J. A. Sloane, Self-dual codes over GF(5), J. Combin. Theory Ser. A 32 (1982), 178-194.
12] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
$13]$ C. L. Mallows, V. Pless and N. J. A. Sloane, Self-dual codes over $G F(3)$, Siam J. Appl. Math. 31 (1976), 649-666.

14] K. Nagata, F. Nemenzo and H. Wada, On self-dual codes over \mathbb{Z}_{16}, Lecture Notes in Computer Science 5527 (2009), 107-116.
[15] K. Nagata, F. Nemenzo and H. Wada, Constructive algorithm of self-dual errorcorrecting codes, Eleventh international workshop on algebraic and combinatorial coding theory, June 16-22, Bulgaria, 215-220, 2008.
16] G. Nebe, E. Rains and N. J. A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006.
[17] Y. H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_{m}, Des. Codes. Crypt 50 (2009), 147-162.
[18] Y. H. Park, The classification of self-dual modular codes, submitted, 2010
[19] V. Pless and V. D. Tonchev, Self-dual codes over GF(7), IEEE Trans. Inform. Theory 33 (1987), 723-727.
[20] E. Rains and N. J. A. Sloane, Self-dual codes, in the Handbook of Coding Theory, V.S. Pless and W.C. Huffman, eds., Elsevier, Amsterdam, 1998, 177294.

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Republic of Korea
E-mail: yhpark@kangwon.ac.kr

[^0]: Received September 30, 2010; Accepted December 13, 2010.
 2010 Mathematics Subject Classification: Primary 94B05, 94A60.
 Key words and phrases: self-dual codes, classification, modular codes.

