JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 4, December 2010

THE CLASSIFICATION OF SELF-DUAL CODES OF LENGTH 6 OVER \mathbb{Z}_m FOR SMALL m

Young Ho Park*

ABSTRACT. In this article we study self-dual codes of length 6 over \mathbb{Z}_m . A classification of such codes for $m \leq 24$ is given. Main tool for the classification is the new double cosets decomposition method given in the recent article of the author.

1. Introduction

Let m, n be positive integers. A modular code C of length n over \mathbb{Z}_m is a \mathbb{Z}_m -submodule of \mathbb{Z}_m^n . For the generality and definitions of modular codes and their lifts, we refer to [6, 7, 10, 12, 17]. A code C with generator matrix G will be denoted by C : G.

 \mathbb{Z}_m^n is equipped with the standard inner product defined by $x \cdot y = \sum x_i y_i$ where $x = (x_i)$, $y = (y_i)$. The dual code C^{\perp} of a code C of length n is defined by $C^{\perp} = \{x \in \mathbb{Z}_m^n \mid x \cdot y = 0 \text{ for all } y \in C\}$. C is called a *self-dual* code if $C = C^{\perp}$. Self-dual codes are an important class of linear codes and much work has been done towards the classification of self-dual codes. The main tool for the classification is the so called *mass formula*, which counts the number of self-dual codes over \mathbb{Z}_m of given length. See [10, 12] for generality or [1, 14, 15] for recent results. Self-dual codes of moderate length over prime fields are classified for small primes by the effort of many authors [2, 3, 9, 11, 13, 19].

It is known, at least theoretically, that the classification of self-dual codes over a ring \mathbb{Z}_m can be done by the Chinese Remainder Theorem and the classification of self-dual codes over the rings \mathbb{Z}_{p^e} where p is a prime [5]. However, it has not been pursued any further and has not been done in almost all cases. Recently, some result on classification of modular codes is obtained by a method based on a classification of m-frames of unimodular lattices [8]. In [18], the author pursued the Chinese

Received September 30, 2010; Accepted December 13, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 94B05, 94A60.

Key words and phrases: self-dual codes, classification, modular codes.

Remainder Theorem to give an elementary classification method using double cosets decomposition and classified self-dual codes of length 4 and of length 8 over \mathbb{Z}_m for many m. In this article, we investigate classification problem of self-dual codes of length 6 over \mathbb{Z}_m , where $m \leq 24$.

2. Chinese products and a classification method

The group S_n of symmetries on n letters acts on \mathbb{Z}_m^n by

$$(c_1, c_2, \cdots, c_n)\sigma = (c_{\sigma(1)}, c_{\sigma(2)}, \cdots, c_{\sigma(n)})$$

Denote by p_{σ} the $n \times n$ permutation matrix corresponding to this action by σ , i.e., $p_{\sigma} = (e_{\sigma(1)}, e_{\sigma(2)}, \cdots, e_{\sigma(n)})$, where e_j is the *j*th standard basis column vector. Let

$$\mathbb{D}_m^n = \{ \operatorname{diag}(\gamma_1, \gamma_2, \cdots, \gamma_n) \mid \gamma_i \in \mathbb{Z}_m, \ \gamma_i^2 = 1 \}.$$

An element $\gamma = \text{diag}(\gamma_1, \gamma_2, \cdots, \gamma_n) \in \mathbb{D}_m^n$ acts on \mathbb{Z}_m^n by

$$(c_1, c_2, \cdots, c_n)\gamma = (\gamma_1 c_1, \gamma_2 c_2, \cdots, \gamma_n c_n).$$

Let \mathbb{T}_m^n be the group of all monomial transformations on \mathbb{Z}_m^n defined by

$$\mathbb{T}_m^n = \{\gamma p_\sigma \mid \gamma \in \mathbb{D}_m^n, \sigma \in S_n\}$$

Let \mathscr{S}_m^n be the set of all self-dual codes of length n over \mathbb{Z}_m . The group \mathbb{T}_m^n acts on \mathscr{S}_m^n by $Ct = \{ct \mid c \in C\}$. Two self-dual codes C and C' in \mathscr{S}_m^n are equivalent (denoted $C \sim C'$) if there exists an element $t \in \mathbb{T}_m^n$ such that Ct = C'. The group of all automorphisms of C will be denoted by $\operatorname{Aut}_{\mathbb{T}_m^n}(C)$ or simply $\operatorname{Aut}(C)$ and the set of orbits or complete representatives will be denoted by $\mathscr{S}_m^n/\mathbb{T}_m^n$.

We will usually abuse the notations and simply write $\operatorname{diag}(\gamma_1, \dots, \gamma_n)$ by $(\gamma_1, \dots, \gamma_n)$ and p_{σ} by σ . Since $\mathbb{D}_m^n \cap S_n = \{I\}$, any element $t \in \mathbb{T}_m^n$ has a unique representation $t = \gamma \sigma$ for $\gamma \in \mathbb{D}_m^n$ and $\sigma \in S_n$. γ will be called the sign of t, and σ will be called the *permutation part* of t. The map $p: \mathbb{T}_m^n \to S_n, p(\gamma \sigma) = \sigma$ is a surjective homomorphism with kernel \mathbb{D}_m^n . Since what is important to us is the number $k = |\mathbb{D}_m^n \cap H|$ and the group p(H) of permutations of H, we usually write

$$(2.1) H = k.p(H).$$

When $H = \operatorname{Aut}(C)$ for some self-dual code C, then p(H) will also be denoted simply by p(C).

Now we discuss the Chinese products. See [18] for detail. For any divisor r of m we denote by $[\cdot]_r$ the natural projection $[\cdot]_r : \mathbb{Z}_m \to \mathbb{Z}_r$ defined by

$$[c]_r = (c \mod r) \in \mathbb{Z}_r.$$

Fix a decomposition m = rs of m with gcd(r, s) = 1. The Chinese Remainder Theorem asserts that $\mathbb{Z}_m \to \mathbb{Z}_r \times \mathbb{Z}_s$, $c \mapsto ([c]_r, [c]_s)$ is an isomorphism. The inverse isomorphism is denoted by

(2.2)
$$\mathbb{Z}_r \times \mathbb{Z}_s \to \mathbb{Z}_m, \quad (a,b) \mapsto a \odot b.$$

 $a \odot b$ will be called the *Chinese product* of a and b, and $c = [c]_r \odot [c]_s$ will be called the *Chinese product decomposition* of $c \in \mathbb{Z}_m$. Note that

$$a \odot b + c \odot d = (a + c) \odot (b + d), \quad (a \odot b)(c \odot d) = (ac) \odot (bd)$$

for $a, c \in \mathbb{Z}_r$ and $b, d \in \mathbb{Z}_s$. For any integer n, these isomorphisms are extended to isomorphisms between \mathbb{Z}_m^n and $\mathbb{Z}_r^n \times \mathbb{Z}_s^n$ in the natural way and use the same notations.

A code C of length n over \mathbb{Z}_m can be uniquely written as a Chinese product $C = [C]_r \odot [C]_s$, and conversely, two codes A of length n over \mathbb{Z}_r and B of length n over \mathbb{Z}_s uniquely determine a code $A \odot B$ over \mathbb{Z}_m .

We have two induced projections $[\cdot]_r$ mapping $t = \gamma \sigma \in \mathbb{T}_m^n$ onto $[t]_r = [\gamma]_r \sigma \in \mathbb{T}_r^n$ and $[\cdot]_s$ mapping $t = \gamma \sigma$ onto $[t]_s = [\gamma]_s \sigma \in \mathbb{T}_s^n$. Composed with these projections, \mathbb{T}_m^n also acts on \mathbb{Z}_r^n and \mathbb{Z}_s^n naturally, i.e., for $a \in \mathbb{Z}_r^n$, $b \in \mathbb{Z}_s^n$, $at := a[t]_r$ and $bt := b[t]_s$ so that $(a \odot b)t = at \odot bt$. Therefore \mathbb{T}_m^n also acts on the sets \mathscr{S}_r^n and \mathscr{S}_s^n naturally as $(A \odot B)t = (At) \odot (Bt)$.

The stabilizer of $A \in \mathscr{S}_r^n$ (or $B \in \mathscr{S}_s^n$) in \mathbb{T}_m^n will be denoted by $\operatorname{Aut}_{\mathbb{T}_m^n}(A)$, i.e.,

$$\operatorname{Aut}_{\mathbb{T}_m^n} A = \{\gamma \sigma \mid [\gamma]_r \sigma \in \operatorname{Aut}(A)\}.$$

The automorphism group of $A \odot B$ is described in the next theorem [18].

THEOREM 2.1. Let A, B be self-dual codes over \mathbb{Z}_r and \mathbb{Z}_s , respectively. Then

- (i) $\operatorname{Aut}_{\mathbb{T}_m^n}(A \odot B) = \operatorname{Aut}_{\mathbb{T}_m^n}(A) \cap \operatorname{Aut}_{\mathbb{T}_m^n}(B).$
- (ii) $p(A \odot B) = p(A) \cap p(B)$.

To classify self-dual codes over \mathbb{Z}_m with m = rs, we first break $\mathscr{S}_m^n/\mathbb{T}_m^n$ into small pieces. For $A \in \mathscr{S}_r^n$, $B \in \mathscr{S}_s^n$, let

$$LE(A,B) = \{A' \odot B' \in \mathscr{S}_r^n \odot \mathscr{S}_s^n \mid A' \sim A, \ B' \sim B\}.$$

 $A' \odot B'$ in LE(A, B) is said to be *locally equivalent* to $A \odot B$. It is clear that LE(A, B) is invariant under the action of \mathbb{T}_m^n and that

(2.3)
$$\mathscr{S}_m^n/\mathbb{T}_m^n = \prod_{\substack{A \in \mathscr{S}_r^n/\mathbb{T}_r \\ B \in \mathscr{S}_s^n/\mathbb{T}_s}} LE(A, B)/\mathbb{T}_m^n.$$
 (disjoint union)

The main theorem of [18] tells us how to obtain the classification of self-dual codes over \mathbb{Z}_m using the double coset decomposition.

THEOREM 2.2. Let $A \in \mathscr{S}_r^n$, $B \in \mathscr{S}_s^n$. The inequivalent codes in LE(A, B) are given by $A \odot B\sigma_i$, where σ_i runs through the double coset representatives of S_n by p(B) and p(A).

Therefore, the classification of self-dual codes over \mathbb{Z}_m reduces to the classification of self-dual codes over \mathbb{Z}_r and \mathbb{Z}_s , and the double coset decompositions. For each pair A, B of codes from $\mathscr{S}_r^n/\mathbb{T}_m^n$ and $\mathscr{S}_s^n/\mathbb{T}_m^n$, respectively, we classify LE(A, B) by starting with the double coset p(B)p(A) and try to find distinct double cosets $p(B)\sigma_2p(A), p(B)\sigma_3p(A), \dots, p(B)\sigma_kp(A)$ until we reach the identity

(2.4)
$$\sum_{i=1}^{k} |p(B)\sigma_i p(A)| = n!,$$

which will be called the *local mass formula*. The local mass formula can be rephrased as

(2.5)
$$\sum_{i=1}^{k} \frac{1}{|\sigma_i^{-1} p(B) \sigma_i \cap p(A)|} = \frac{n!}{|p(B)||p(A)|}.$$

This equality ensures that we have all of inequivalent codes $A \odot B\sigma_i$, $1 \le i \le k$, in LE(A, B). There is a case when the classification is trivial.

COROLLARY 2.3. Let $A \in \mathscr{S}_r^n$, $B \in \mathscr{S}_s^n$ with $p(B) = S_n$. Then all codes in $LE(A \odot B)$ are equivalent.

3. Known results on classification of self-dual codes of length 6

The following theorem is well-known.

THEOREM 3.1. Let p be an odd prime. There exists a self-dual code of length n over \mathbb{Z}_p if and only if

$$\begin{cases} 2 \mid n, & \text{if } p \equiv 1 \pmod{4} \\ 4 \mid n, & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

For codes over \mathbb{Z}_{2^m} , we have the following.

- THEOREM 3.2. (i) Suppose m = 2k is even. Then the length 1 code C_1 with generator matrix (2^k) is a self-dual code over \mathbb{Z}_{2^m} . Therefore there exist self-dual codes of every length over \mathbb{Z}_{2^m} .
- (ii) Suppose m = 2k + 1 is odd. Then the code C_2 with generator matrix

$$\begin{pmatrix} 2^k & 2^k \\ 0 & 2^{k+1} \end{pmatrix}$$

is a self-dual code of length 2 over \mathbb{Z}_{2^m} . Therefore, there exist self-dual codes of every even length over \mathbb{Z}_{2^m} .

Proof. Recall that C is self-dual code of length n over \mathbb{Z}_{2^m} if and only if C is self-orthogonal and $|C| = 2^{mn/2}$. It is easy to check that C_1 and C_2 are self-orthogonal. Also $|C_1| = 2^{m-k} = 2^k = 2^{m \cdot 1/2}$ and $|C_2| = 2^{m-k} \cdot 2^{m-k-1} = 2^m = 2^{m \cdot 2/2}$. Thus C_1 and C_2 are self-orthogonal. Finally, we can get codes with desired length by taking the direct products $C_i \oplus \cdots \oplus C_i$.

It is known that there is a unique inequivalent binary self-dual code of length 6 generated by

$$\left(\begin{smallmatrix}1&1\\&1&1\\&&1&1\end{smallmatrix}\right).$$

From these results and Chinese remainder theorem, we see that there is a self-dual code of length 6 over \mathbb{Z}_m , where $m \leq 24$ only if

$$m = 4, 5, 8, 13, 16, 17, 20.$$

For m = 4, 5, 8, 13, 17 we have the following known results by several authors.

THEOREM 3.3 ([3]). There are three inequivalent self-dual codes of length 6 over \mathbb{Z}_4 as follows.

THEOREM 3.4 ([11]). There are two inequivalent self-dual codes of length 6 over \mathbb{Z}_5 as follows.

$$C_{5,1}: \begin{pmatrix} 1 & 4 & 2 & 2 \\ 2 & 2 & 1 & 4 & 2 & 2 \\ 2 & 2 & 1 & 4 & 4 \end{pmatrix}$$
$$C_{5,2}: \begin{pmatrix} 1 & 2 & & \\ & 1 & 2 & & \\ & & 1 & 2 & \\ & & & 1 & 2 \end{pmatrix}$$

THEOREM 3.5 ([4]). There is a unique inequivalent self-dual code of length 6 over \mathbb{Z}_8 generated by

$$\begin{pmatrix} 2 & 2 \\ 4 \end{pmatrix} \oplus \begin{pmatrix} 2 & 2 \\ 4 \end{pmatrix} \oplus \begin{pmatrix} 2 & 2 \\ 4 \end{pmatrix} \oplus \begin{pmatrix} 2 & 2 \\ 4 \end{pmatrix}.$$

THEOREM 3.6 ([2]). There are five inequivalent self-dual codes of length 6 over \mathbb{Z}_{13} and six over \mathbb{Z}_{17} .

The mass formula for self-dual codes over \mathbb{Z}_{16} is determined in [14]. However the classification has not been done yet. Except this case, codes over \mathbb{Z}_{20} remains to be classified.

4. Classification over \mathbb{Z}_{20}

First we give the groups of permutations of $C_{4,i}$ and $C_{5,j}$. Let H, K, L be subgroups of S_6 as follows:

$$\begin{split} H &= \langle (12), (34), (3546) \rangle, \\ K &= \text{the permutation group on } \{3, 4, 5, 6\} \\ L &= \langle (23564), (3546) \rangle. \end{split}$$

Then we have that |H| = 16, |K| = 4! and |L| = 20. By a computer search we obtain the following permutation groups.

THEOREM 4.1. The groups of permutations in the automorphism groups of $C_{4,i}$ and $C_{5,j}$ are given by

$$p(C_{4,1}) = H \cup (13)(24)H \cup (15)(26)H,$$

$$p(C_{4,2}) = K \cup (12)K,$$

$$p(C_{4,3}) = S_6,$$

$$p(C_{5,1}) = L \cup (12)L \cup (13)L \cup (14)L \cup (15)L \cup (16)L,$$

$$p(C_{5,2}) = p(C_{4,1})$$

of order 48, 48, 720, 120, 48 respectively.

To classify self-dual codes of length 6 over \mathbb{Z}_{20} using Theorem 2.2, we need to compute double cosets $p(C_{4,i}) \setminus S_6/p(C_{5,j})$ for each *i* and *j*. By a help of a computer, we obtain our main result.

THEOREM 4.2. There are 10 inequivalent self-dual codes of length 6 over \mathbb{Z}_{20} as follows:

(i) $C_{4,1} \odot C_{5,1}$ with generator matrix

and weight distribution $\{1, 0, 3, 8, 303, 1752, 5933\}$.

(ii) $C_{4,1} \odot C_{5,1}(45)$ with generator matrix

/ _ 0 _, _0 0	•
0 0 1 17 9 7	
17701659	
$\setminus 0 \ 0 \ 0 \ 0 \ 10 \ 10$	Ϊ

- and weight distribution $\{1, 0, 3, 8, 303, 1752, 5933\}$.
- (iii) $C_{4,1} \odot C_{5,2}$ with generator matrix

1	17	5	15	0	0
10	0	1	17	5	15
5	15	0	0	1	17 J
$\setminus 0$	0	0	0	10	10/

and weight distribution $\{1, 0, 27, 8, 639, 984, 6341\}$

(iv) $C_{4,1} \odot C_{5,2}(45)$ with generator matrix

/1	17	5	15	0	0	
1 0	0	1	5	17	15	
5	15	0	16	5	17	
$\setminus 0$	0	0	0	10	10	Ϊ

and weight distribution $\{1, 0, 19, 40, 431, 1336, 617\}$. (v) $C_{4,1} \odot C_{5,2}(23)(45)$ with generator matrix

/1	5	17	15	0	0 \	
0	16	5	5	17	15	Ĺ
5	15	0	16	5	17	
$\setminus 0$	0	0	0	10	10/	

and weight distribution $\{1, 0, 15, 56, 327, 1512, 6089\}$.

(vi) $C_{4,2} \odot C_{5,1}$ with generator matrix

and weight distribution $\{1, 2, 7, 12, 527, 2066, 5385\}$. (vii) $C_{4,2} \odot C_{5,2}$ with generator matrix

	16	12	0	0	0	0	
l	0	10	16	12	0	0	۱
	0	0	5	5	1	17	
	Ō.	Ō	Ō	10	0	10	1
	$\sqrt{0}$	0	0	0	10	10	/

and weight distribution $\{1, 2, 39, 76, 783, 1234, 5865\}$.

(viii) $C_{4,2} \odot C_{5,2}(23)$ with generator matrix

/60	$0 \ 1$	12	0	0	0	/
100	6	0	12	0	0	
0 0	0	5	5	1	17	
100	0	0	10	0	10	
-\0 (0	0	0	10	10	Ϊ

and weight distribution $\{1, 2, 31, 108, 575, 1586, 5697\}$.

(ix) $C_{4,3} \odot C_{5,1}$ with generator matrix

/	6	4	12	12	0	0	1
1	0	10	16	4	12	12	۱
	12	12	10	0	16	4	1
	0	0	0	10	0	0	1
	0	0	0	0	10	0	1
/	0	0	0	0	0	10	/

and weight distribution $\{1, 6, 15, 20, 975, 2694, 4289\}$. (x) $C_{4,3} \odot C_{5,2}$ with generator matrix

/ 6	12	0	0	0	0	
1 0	10	16	12	0	0	
0	0	10	0	16	12	
0	0	0	10	0	0	
1 0	0	0	0	10	0	
$\setminus 0$	0	0	0	0	10	Ϊ

and weight distribution $\{1, 6, 63, 212, 1071, 1734, 4913\}$.

Proof. The generator matrices can be obtained using a method in [17] and then the weight distributions can be computed easily. For each pair (i, j), the double cosets decomposition $p(C_{4,i}) \setminus S_6/p(C_{5,j})$ is computed by a computer. However, we may also prove the theorem using the local mass formula (2.5) as follows. Let $A = C_{4,1}$, $B = C_{5,1}$. We can show that $|p(A) \cap p(B)| = 24$ and $|(45)p(A)(45) \cap p(B)| = 12$. Since

$$\frac{1}{24} + \frac{1}{12} = \frac{1}{8} = \frac{720}{48 \times 12} = \frac{6!}{|p(B)||p(A)|}$$

we conclude that $LE(C_{4,1}, C_{5,1})$ has two inequivalent codes $A \odot B$ and $A \odot B(45)$. For the remaining cases, we list the intersection numbers $|\sigma^{-1}p(A)\sigma \cap p(B)|$. In all cases, the intersection numbers are all distinct, so it is easy to check the local mass formula.

References

- J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over Z_{p²}, Discrete Math. **308** (2009), 2984–3002.
- [2] K. Betsumiya, S. Georgiou, T. A. Gulliver, M. Harada, C. Kououvinos, On self-dual codes over some prime fields, Discrete Math. 262 (2009), 37–58.
- J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A 62 (1993), 30–45.
- [4] S. T. Dougherty, T. A. Gulliver and J. N. C. Wong, Self-dual codes over Z₈ and Z₉, Des Codes Crypt 41 (2006), 235–249.

The classification of self-dual modular codes of length 6

A	В	p(A)	p(B)	$A \odot B\sigma$	$\left \sigma^{-1} p(B) \sigma \cap p(A) \right $
$C_{4,1}$	$C_{5,1}$	48	120	$A \odot B$	24
				$A \odot B(45)$	12
$C_{4,1}$	$C_{5,2}$	48	48	$A \odot B$	48
				$A \odot B(45)$	8
				$A \odot B(23)(45)$	6
$C_{4,2}$	$C_{5,1}$	48	120	$A \odot B$	8
$C_{4,2}$	$C_{5,2}$	48	48	$A \odot B$	16
				$A \odot B(23)$	4
$C_{4,3}$	$C_{5,1}$	720	120	$A \odot B$	120
$C_{4,3}$	$C_{5,2}$	720	48	$A \odot B$	48

- [5] S. T. Dougherty, M. Harada and P. Sole, Self-dual codes over rings and the Chinese Remainder Theorem, Hokkaido Math Journal 28 (1999), 253-283.
- [6] S. T. Dougherty, S. Y. Kim and Y. H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123–135.
- [7] S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65–80.
- [8] M. Harada and A. Munemasa, On the classification of self-dual \mathbb{Z}_k -codes, Lecture Notes in Computer Science **5921**, (2009) 78-90.
- [9] W. C. Huffman, On the classification and enumeration of self-dual codes, Finite fields and their applications, 11 (2005), 451–490.
- [10] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
- [11] J. S. Leon, V. Pless and N. J. A. Sloane, Self-dual codes over GF(5), J. Combin. Theory Ser. A 32 (1982), 178–194.
- [12] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
- [13] C. L. Mallows, V. Pless and N. J. A. Sloane, *Self-dual codes over GF*(3), Siam J. Appl. Math. **31** (1976), 649–666.
- [14] K. Nagata, F. Nemenzo and H. Wada, On self-dual codes over Z₁₆, Lecture Notes in Computer Science 5527 (2009), 107–116.
- [15] K. Nagata, F. Nemenzo and H. Wada, Constructive algorithm of self-dual errorcorrecting codes, Eleventh international workshop on algebraic and combinatorial coding theory, June 16-22, Bulgaria, 215–220, 2008.
- [16] G. Nebe, E. Rains and N. J. A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006.
- [17] Y. H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_m , Des. Codes. Crypt **50** (2009), 147–162.
- [18] Y. H. Park, The classification of self-dual modular codes, submitted, 2010
- [19] V. Pless and V. D. Tonchev, Self-dual codes over GF(7), IEEE Trans. Inform. Theory 33 (1987), 723–727.

[20] E. Rains and N. J. A. Sloane, *Self-dual codes*, in the Handbook of Coding Theory, V.S. Pless and W.C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294.

*

Department of Mathematics Kangwon National University Chuncheon 200-701, Republic of Korea *E-mail*: yhpark@kangwon.ac.kr