ON SOME PROPERTIES OF A SINGLE CYCLE T-FUNCTION AND EXAMPLES

Min Surp Rhee*

Abstract

In this paper we study the structures and properties of a single cycle T-finction, whose theory has been lately proposed by Klimov and Shamir. Any cryptographic system based on Tfunctions may be insecure. Some of the TSC-series stream ciphers have been successfully attacked by some attacks. So it is important to analyze every aspect of a single cycle T-function. We study some properties on a single cycle T-function and we show some examples are single cycle T-functions by these properties, whose proof is easier than existing methods.

1. Introduction

Few years ago, Klimov and Shamir proposed the theory of T-functions [2-5]. T-functions are in the primitive level. A function from $\left(F_{2}\right)^{m}$ to $\left(F_{2}\right)^{n}$ is said to be a T -function(T means triangle function) if it does not propagate information from left to right, that is, each bit i of the outputs can depend only on bits $0,1, \cdots, i$ of the inputs. It is easy to see that the boolean operations(XOR, AND, OR, NOT) and algebraic operations(addition, multiplication, substraction, negation) modulo 2^{n}, including left shift are all T-functions and their compositions are Tfunctions, too[2].

Since the use of T-functions in cryptography is so recent, not much is known about their cryptographic properties. Any cryptographic system based on T-functions may be insecure. Some of the TSC-series stream ciphers have been successfully attacked by some attacks[6]. So it is important to analyze every aspect of a single cycle T-function.

[^0]In this paper we study some properties on a single cycle T-function and we show some examples are single cycle T-functions, whose proof is easier than existing methods. The notations in this paper are standard. They are taken from [3]. Especially, $\bigoplus_{x=0}^{2^{j}-1} \alpha(x)$ denotes $\alpha(0) \oplus \alpha(1) \oplus$ $\cdots \oplus \alpha\left(2^{j}-1\right)$.

2. Preliminaries

In this section, we introduce some definitions which will be used later. Let F_{2} be a finite field with two elements 0 and 1 . Usually, the addition in F_{2} is denoted by \oplus and the multiplication in F_{2} is denoted by \cdot. For any positive integer n a vector $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ of $\left(F_{2}\right)^{n}$ is called a word of length n and x_{j} is called the $\mathbf{j t h}$ bit of x. In particular, x_{0} is called the least significant bit of x. Usually, the addition in $\left(F_{2}\right)^{n}$ is denoted by \oplus. Every word $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ of $\left(F_{2}\right)^{n}$ can be written as an integer $x=\sum_{i=0}^{n-1} x_{i} 2^{i}$, which is an element of the residue class ring $\mathbb{Z}_{2^{n}}$ modulo 2^{n}. Usually, the addition and the multiplication in $\mathbb{Z}_{2^{n}}$ are denoted by + and \cdot, respectively. Conversely, every integer x of $\mathbb{Z}_{2^{n}}$ can be written as a binary digit expression $x=[x]_{n-1}[x]_{n-2} \cdots[x]_{1}[x]_{0}$ (in other expression $x=\sum_{i=0}^{n-1}[x]_{i} 2^{i}$) and so every integer x of $\mathbb{Z}_{2^{n}}$ can be written as $x=\left([x]_{0},[x]_{1}, \cdots,[x]_{n-1}\right)$ in $\left(F_{2}\right)^{n}$. In this point of view we may consider the set $\left(F_{2}\right)^{n}$ as the set $\mathbb{Z}_{2^{n}}$, and vice versa.

A function $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ is said to be a single cycle function if the sequence induced by its iteration $x, f(x), f^{2}(x)=f(f(x)), \cdots$ has a period of length 2^{n}, which is the maximal possible length. Every single cycle function is a bijective function since a function which is not surjective is not a single cycle T-function. A function from $\left(F_{2}\right)^{n}$ into F_{2} is called a boolean function. For any function $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ defined by $f\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ each y_{i} is a function of $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ and so y_{i} is a boolean function for all $i=$ $0,1,2, \cdots, n-1$. A function $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ can be interpreted as n boolean functions.

A parameter is a function $g\left(x_{1}, \cdots, x_{n} ; \alpha_{1}, \cdots, \alpha_{m}\right)$ whose arguments are split by a semicolon into inputs $x_{1}, x_{2}, \cdots, x_{n}$ and parameters $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ which do not depend on their inputs. A function $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ defined by $f\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ is said to be a \mathbf{T} - function if $y_{0}=f_{0}\left(x_{0}\right)$ and each i th output y_{i} of $f(x)$ is a parameter $y_{i}=f_{i}\left(x_{i} ; x_{0}, x_{1}, \cdots, x_{i-1}\right)$ for all $i=1,2, \cdots, n-1$.

It is from [2] that a single cycle T-function f can be written either in the form $f(x)=x+r_{1}(x)$ or in the form $f(x)=x \oplus r_{2}(x)$, where $r_{1}(x)$ and $r_{2}(x)$ are parameter satisfying conditions as in [5].

Let $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ be a function, and define a function f^{i} : $\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ by $f^{0}(x)=x$ and $f^{i}(x)=f\left(f^{i-1}(x)\right)$ for every positive integer i. Let $x=\left([x]_{0},[x]_{1}, \cdots,[x]_{n-1}\right)$ and $f(x)=\left([f(x)]_{0},[f(x)]_{1}, \cdots\right.$,$\left.[f(x)]_{n-1}\right)$. When we use the notation $f^{i}(x)=\left(\left[f^{i}(x)\right]_{0},\left[f^{i}(x)\right]_{1}, \cdots\right.$, [$\left.\left.f^{i}(x)\right]_{n-1}\right)$ for every positive integer i, we get

$$
f^{i}(x)=f\left(f^{i-1}(x)\right)=f\left(\left[f^{i-1}(x)\right]_{0},\left[f^{i-1}(x)\right]_{1}, \cdots,\left[f^{i-1}(x)\right]_{n-1}\right) .
$$

Example 2.1. Let $f(x)=x+\left(x^{2} \vee 1\right)$ on $\mathbb{Z}_{2^{n}}$, and let $x=\sum_{i=0}^{n-1}[x]_{i} 2^{i}$. Then $x^{2}=[x]_{0}+\left([x]_{1}^{2}+[x]_{0}[x]_{1}\right) 2^{2}+\cdots$ and we have

$$
\begin{aligned}
& {[f(x)]_{0} }=[x]_{0}+[x]_{0} \vee 1 \\
& {[f(x)]_{1} }=[x]_{1} \\
& {[f(x)]_{2} }=[x]_{2}+[x]_{1}+[x]_{0}[x]_{1} \\
& \vdots \\
& {[f(x)]_{i} }=[x]_{i}+\alpha_{i}, \alpha_{i} \text { is a function of }[x]_{0}, \cdots,[x]_{i-1}
\end{aligned}
$$

Hence $f(x)$ is a T-function. For any given word $f(x)$ we can find $[x]_{0},[x]_{1}, \cdots,[x]_{n-1}$ in order. Therefore $f(x)$ is an invertible T-function.

A polynomial $f(x)$ over $\mathbb{Z}_{2^{n}}$ may be considered as a T-function. A polynomial over $\mathbb{Z}_{2^{n}}$ is a permutation polynomial if it is invertible on $\mathbb{Z}_{2^{n}}$. The following results are well known in [3].

Proposition 2.2. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}$ be a polynomial over $\mathbb{Z}_{2^{n}}$. Then $f(x)$ is a permutation polynomial over $\mathbb{Z}_{2^{n}}$ if and only if a_{1} is odd, $a_{2}+a_{4}+\cdots$ is even and $a_{3}+a_{5}+\cdots$ is even.

Proposition 2.3. If $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ is a single cycle T-function, then $\mathbb{Z}_{2^{n}}=\left\{f^{i}(x) \mid i \in \mathbb{Z}_{2^{n}}\right\}$ for each $x \in \mathbb{Z}_{2^{n}}$. In particular, $\mathbb{Z}_{2^{n}}=\left\{f^{i}(0) \mid i \in\right.$ $\left.\mathbb{Z}_{2^{n}}\right\}$. Consequently, f is an invertible function on $\mathbb{Z}_{2^{n}}$.

Proposition 2.4. Let $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ be a function on $\left(F_{2}\right)^{n}$. Then f is invertible T-function if and only if for all $j<n$ the j th bit of the output can be represented as

$$
[f(x)]_{j}=f\left([x]_{j} ;[x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right) .
$$

3. Some propositions and examples

In this section we prove some properties and give examples related to them

Proposition 3.1. A T-function $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ is a single cycle if and only if for all $j<n$ the j th bit of the output can be represented as

$$
[f(x)]_{j}=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right) \text { and } \bigoplus_{x=0}^{2^{j}-1} \alpha(x)=1
$$

Proof. Suppose that a T-function $f:\left(F_{2}\right)^{n} \rightarrow\left(F_{2}\right)^{n}$ is a single cycle. Since f is a bijective T-function, by Proposition 2.4 the j th bit of the output can be represented as

$$
[f(x)]_{j}=f\left([x]_{j} ;[x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)
$$

for all $j<n$. Consider a sequence $(*)$ as follows:

$$
\left([x]_{0}, \cdots,[x]_{j}\right), \quad\left([f(x)]_{0}, \cdots,[f(x)]_{j}\right), \quad\left(\left[f^{2}(x)\right]_{0}, \cdots,\left[f^{2}(x)\right]_{j}\right), \cdots,
$$

$$
\left(\left[f^{i-1}(x)\right]_{0}, \cdots,\left[f^{i-1}(x)\right]_{j}\right),\left(\left[f^{i}(x)\right]_{0}, \cdots,\left[f^{i}(x)\right]_{j}\right), \cdots
$$

Since $f(x)$ is a single cycle T-function this sequence $(*)$ has a period of length 2^{j+1}. If $j=0$, then $[f(x)]_{0}=[x]_{0} \oplus 1$ and so $\bigoplus_{x=0} \alpha(x)=$ 1. Consider the sequence $\left\{\left[f^{i}(x)\right]_{k}\right\}:[x]_{k},[f(x)]_{k},\left[f^{2}(x)\right]_{k}, \cdots,\left[f^{i}(x)\right]_{k}$, \cdots. Then we get

$$
\begin{aligned}
{[f(x)]_{k}=} & {[x]_{k} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{k-1}\right), } \\
{\left[f^{2}(x)\right]_{k}=} & {[f(x)]_{k} \oplus \alpha\left([f(x)]_{0},[f(x)]_{1}, \cdots,[f(x)]_{k-1}\right) } \\
= & {[x]_{k} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{k-1}\right) } \\
& \oplus \alpha\left([f(x)]_{0},[f(x)]_{1}, \cdots,[f(x)]_{k-1}\right), \\
{\left[f^{i}(x)\right]_{k}=} & {[x]_{k} \oplus \bigoplus_{l=0}^{i-1} \alpha\left(\left[f^{l}(x)\right]_{0},\left[f^{l}(x)\right]_{1}, \cdots,\left[f^{l}(x)\right]_{k-1}\right) . }
\end{aligned}
$$

Note that $\left[f^{2^{j}}(x)\right]_{m}=[x]_{m} \oplus \bigoplus_{k=0}^{2^{j}-1} \alpha\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{m-1}\right)$ $=[x]_{m}$ for each positive integer $m<j$. Hence for each positive integer $m<j$ we get

$$
\bigoplus_{x=0}^{2^{j}-1} \alpha(x)=\bigoplus_{x=0}^{2^{j}-1} \alpha\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{m-1}\right)=0
$$

Consider the $\left(2^{j}+1\right)$ th term of sequence $(*)\left(\left[f^{2^{j}}(x)\right]_{0}, \cdots,\left[f^{2^{j}}(x)\right]_{j-1}\right.$, $\left.\left[f^{2^{j}}(x)\right]_{j}\right)$. By the above argument and the fact that the sequence $(*)$ has
a period of length 2^{j+1} we get $\left(\left[f^{2^{j}}(x)\right]_{0}, \cdots,\left[f^{2^{j}}(x)\right]_{j-1},\left[f^{2^{j}}(x)\right]_{j}\right)=$ $\left([x]_{0}, \cdots,[x]_{j-1},\left[f^{2^{j}}(x)\right]_{j}\right)$ and $\left[f^{2^{j}}(x)\right]_{j}=[x]_{j} \oplus 1$. Since f is a single cycle function we get $\left\{\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{j-1}\right) \mid k=0,1,2, \cdots\right.$, $\left.2^{j}-1\right\}=\left(F_{2}\right)^{j}$ and $\bigoplus_{x=0}^{2^{j}-1} \alpha(x)=\bigoplus_{x=0}^{2^{j}-1} \alpha\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots\right.$, $\left.\left[f^{k}(x)\right]_{j-1}\right)=1$.

Conversely, suppose that the j th bit of the output can be represented as $[f(x)]_{j}=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)$ and $\bigoplus_{x=0}^{2^{j}-1} \alpha(x)=1$ for all $j<n$. By first assumption f is a bijective T-function. We prove that f is a single cycle T-function by induction. If $j=0$, then $[f(x)]_{0}=[x]_{0} \oplus 1$ and f has a sequence which has a period of length 2 modulo 2. Assume that it holds for $j-1$. Then f has a sequence which has a period of length 2^{j} modulo 2^{j}. That is, we get $\left\{\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{j-1}\right) \mid k=\right.$ $\left.0,1,2, \cdots, 2^{j}-1\right\}=\left(F_{2}\right)^{j}$.

Consider $\left\{\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{j-1}\right) \mid k=0,1,2, \cdots, 2^{j+1}-\right.$ $1\}$. Suppose $\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{j-1},\left[f^{k}(x)\right]_{j}\right)=\left(\left[f^{l}(x)\right]_{0}\right.$, $\left.\left[f^{l}(x)\right]_{1}, \cdots,\left[f^{l}(x)\right]_{j-1},\left[f^{l}(x)\right]_{j}\right)$ for some distinct k and l in $\mathbb{Z}_{2^{j+1}}$. Then $\left[f^{k}(x)\right]_{i}=\left[f^{l}(x)\right]_{i}$ for all $i<j$ and $\left[f^{k}(x)\right]_{j}=\left[f^{l}(x)\right]_{j}$. By our assumption $k \equiv l \bmod 2^{j}$ and $\left[f^{k}(x)\right]_{j}=\left[f^{l}(x)\right]_{j}$. Hence $k=l+2^{j}$ in $\mathbb{Z}_{2^{j+1}}$ and we get

$$
\begin{aligned}
{\left[f^{k}(x)\right]_{j} } & =\left[f^{l+2^{j}}(x)\right]_{j}=\left[f^{l}(x)\right]_{j} \oplus \bigoplus_{x=0}^{2^{j}-1} \alpha\left(f^{l}(x)\right) \\
& =\left[f^{l}(x)\right]_{j} \oplus \bigoplus_{x=0}^{2^{j}-1} \alpha(x)=\left[f^{l}(x)\right]_{j} \oplus 1 \\
& \neq\left[f^{l}(x)\right]_{j}
\end{aligned}
$$

which is a contradiction. So $\left\{\left(\left[f^{k}(x)\right]_{0},\left[f^{k}(x)\right]_{1}, \cdots,\left[f^{k}(x)\right]_{j-1},\left[f^{k}(x)\right]_{j}\right)\right.$ $\left.\mid k=0,1,2, \cdots, 2^{j+1}-1\right\}=\left(F_{2}\right)^{j+1}$ and f has a sequence which has a period of length 2^{j+1}. Thus f is a single cycle T-function.

From Proposition 3.1 we get the following proposition.
Proposition 3.2. Let $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ be a polynomial. Then f is a single cycle if and only if for all $j<n$ the j th bit of the output can be represented as $[f(x)]_{j}=[x]_{j} \oplus[g(y)]_{j}$ and $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j} \bmod 2^{j+1}$, where $g(x)=f(x)-x$ is a parameter, $x=2^{j}[x]_{j}+\cdots+2[x]_{1}+[x]_{0}$ and $y=2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}$.

Proof. Let $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ be a polynomial defined by $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$. Then f is a T-function. Suppose that a T-function $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ is a
single cycle. When we consider $\mathbb{Z}_{2^{n}}$ as $\left(F_{2}\right)^{n}$ a T-function $f:\left(F_{2}\right)^{n} \rightarrow$ $\left(F_{2}\right)^{n}$ is a single cycle. Then by Proposition 3.1 for all $j<n$ the j th bit of the output can be represented as

$$
[f(x)]_{j}=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right) \text { and } \bigoplus_{x=0}^{2^{j}-1} \alpha(x)=1
$$

Note $[f(x)]_{j}=\left[\sum_{i=0}^{m} a_{i} x^{i}\right]_{j}=\bigoplus_{i=0}^{m}\left[a_{i} x^{i}\right]_{j}=[x]_{j} \oplus \bigoplus_{i=0}^{m}\left[a_{i} x^{i}\right]_{j} \oplus$ $[x]_{j}$. Since $\alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)$ is a paremeter, $\bigoplus_{i=0}^{m}\left[a_{i} x^{i}\right]_{j} \oplus[x]_{j}$ is a parameter and $a_{1}+1$ is even. Let $g(x)=f(x)-x$. Then $[g(x)]_{j}=$ $\alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)$. Note $[g(x)]_{j}=\left[g\left([x]_{0}+2[x]_{1}+\cdots+2^{j-1}[x]_{j-1}\right)\right]_{j}$ $=[g(y)]_{j}$, where $y=2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}$. Hence $\alpha(y)=$ $\alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right)=[g(y)]_{j}$ and $1=\bigoplus_{x=0}^{2^{j}-1} \alpha(y)=\left[\sum_{x=0}^{2^{j}-1} g(y)\right]_{j}$. Since $\left[\oplus_{x=0}^{2^{j}-1} g(y)\right]_{j}=0$ for all $i<j, \bigoplus_{x=0}^{2^{j}-1} g(y)=(0,0, \cdots, 0,1)$ and $\sum_{x=0}^{2^{j}-1} g(y) \equiv 2^{j} \bmod 2^{j+1}$.

Conversely, suppose that for all $i<j$ the j th bit of the output can be represented as $[f(x)]_{j}=[x]_{j} \oplus[g(y)]_{j}$ and $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j} \bmod 2^{j+1}$, where $g(x)=f(x)-x$ is a parameter, $x=2^{j}[x]_{j}+\cdots+2[x]_{1}+[x]_{0}$ and $y=2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}$. Since $g(x)$ is a parameter, we get

$$
\begin{aligned}
{[g(y)]_{j} } & =\left[g\left(2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}\right)\right]_{j}=\alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right), \\
{[f(x)]_{j} } & =[x]_{j} \oplus[g(y)]_{j}=[x]_{j} \oplus \alpha\left([x]_{0},[x]_{1}, \cdots,[x]_{j-1}\right) .
\end{aligned}
$$

Also, we have $\bigoplus_{x=0}^{2^{j}-1} \alpha(x)=\bigoplus_{x=0}^{2^{j}-1}[g(x)]_{j}=\left[\bigoplus_{x=0}^{2^{j}-1} g(x)\right]=\left[\sum_{x=0}^{2^{j}-1}\right.$ $g(x)]_{j}=1$ since $\sum_{x=0}^{2^{j}-1} g(y)=2^{j} \bmod 2^{j+1}$. Therefore, f is a single cycle.

By Proposition 3.2 we can characterize a single cycle polynomial of degree not greater than 2 in next two examples. The proof is much easier than the one as in [7].

Example 3.3. Let $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ be a function defined by $f(x)=$ $a x+b$. Then f is a single cycle T-function if and only if for all $j<n$ the j th bit of the output can be represented as $[f(x)]_{j}=[x]_{j} \oplus[g(y)]_{j}$ and $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j} \bmod 2^{j+1}$, where $g(x)=f(x)-x$ is a parameter and $y=2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}$. Since $g(0) \equiv 1 \bmod 2, b \equiv$ $1 \bmod 2$. Hence note that $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j} \bmod 2^{j+1}$ if and only if $\sum_{x=0}^{2^{j}-1}(a-1) x+b=\frac{(a-1)\left(2^{j}-1\right)\left(2^{j}\right)}{2}+b 2^{j} \equiv 2^{j} \bmod 2^{j+1}$ if and only if $\frac{(a-1)\left(2^{j}-1\right)\left(2^{j}\right)}{2} \equiv 0 \bmod 2^{j+1}$ if and only if $a \equiv 1 \bmod 4$. Therefore
$f(x)=a x+b$ is a single cycle T-function if and only if $a \equiv 1 \bmod 4$ and $b \equiv 1 \bmod 2$.

Example 3.4. Let $f: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ be a function defined by $f(x)=$ $a x^{2}+b x+c$. Then f is a single cycle T-function if and only if for all $j<n$ the j th bit of the output can be represented as $[f(x)]_{j}=[x]_{j} \oplus[g(y)]_{j}$ and $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j} \bmod 2^{j+1}$, where $g(x)=f(x)-x$ is a parameter and $y=2^{j-1}[x]_{j-1}+\cdots+2[x]_{1}+[x]_{0}$. Since $g(0) \equiv 1 \bmod 2, c \equiv 1 \bmod$ 2. Also, b is odd since $g(x)$ is a parameter. Note that $\sum_{x=0}^{2^{j}-1} g(x) \equiv 2^{j}$ $\bmod 2^{j+1}$ if and only if $\sum_{x=0}^{2^{j}-1}\left\{a x^{2}+(b-1) x+c\right\} \equiv 2^{j} \bmod 2^{j+1}$. Hence we get $\frac{a\left(2^{j}-1\right)\left(2^{j}\right)\left(2^{j+1}-1\right)}{6}+\frac{(b-1)\left(2^{j}-1\right)\left(2^{j}\right)}{2}+c 2^{j} \equiv 2^{j} \bmod 2^{j+1}$. Since $a\left(2^{j+1}-1\right)+3(b-1)=2 a\left(2^{j}+1\right)+3(-a+b-1)$, we get

$$
\begin{aligned}
& \frac{\left(2^{j}-1\right)\left(2^{j}\right)\left\{a\left(2^{j+1}-1\right)+3(b-1)\right\}}{6} \\
& \quad \equiv \frac{a\left(2^{j}-1\right)\left(2^{j}\right)\left(2^{j}+1\right)}{3}+\frac{(-a+b-1)\left(2^{j}-1\right) 2^{j}}{2} \\
& \quad \equiv \frac{(-a+b-1)\left(2^{j}-1\right) 2^{j}}{2} \bmod 2^{j+1}
\end{aligned}
$$

and so $-a+b-1 \equiv 0 \bmod 4$. Since b is odd, we get $a \equiv 0 \bmod 4$, $b \equiv 1 \bmod 4$ or $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$. Therefore, f is a single cycle T-function if and only if one of the following is satisfied:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$,
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

In this paper we have proved Proposition 3.1 using by different technic and Proposition 3.2 by using Proposition 3.1. Also, we have characterize a single cycle polynomial of degree d not greater than 2 by using Proposition 3.2. This characterization process is from easy calculation, which is much easier than the one as in [7]. Actually, we can characterize a single cycle polynomial of degree by using Proposition 2.2 and Proposition 3.2. Our future study is to apply this proposition to characterize some conditions so that a general T-function is a single cycle function.

References

[1] Jin Hong, Dong Hoon Lee, Yongjin Yeom and Daewan Han, A New Class of Single Cycle T-functions, FSE 2005, LNCS 3557 (2005), 68-82.
[2] A Kilmov, Applications of T-functions in Cryptography, Ph.D.Thesis Weizmann Institute Science, 2005.
[3] A Kilmov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, LNCS 2523 (2003), 470-483.
[4] A Kilmov and A. Shamir, Cryptographic Applications of T-Functions, SAC 2003, LNCS 3006 (2004), 248-261.
[5] A Kilmov and A. Shamir, New Cryptographic Primitives Based on Multiword T-Functions, FSE 2004, LNCS 3017 (2004), 1-15.
[6] F. Muller and T Peyrin, Linear Cryptanalysis of TSC Stream Ciphers Applications to the ECRYPT proposal TSC-3, Asiacrypt 2005, LNCS 3329 (2005), 468-482.
[7] M Rhee, On a characterization of T-functions with one cycle property, J. of the Chungcheong Math Soc. 21 (2008), no. 2.

Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: msrhee@dankook.ac.kr

[^0]: Received November 09, 2010; Accepted November 24, 2010.
 2010 Mathematics Subject Classification: Primary 94A60.
 Key words and phrases: T-function, n-bit words, a parameter function, a boolean function, period, a single cycle T-function, cryptographic scheme.

 This research was supported by the Graduate Research Assistantship of Dankook University.

