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Abstract. In this paper, we introduce the AP-Henstock Dunford,
AP-Henstock Pettis and AP-Henstock Bochner integral Banach-
valued functions and investigate some properties of the these inte-
grals.

1. Introduction and preliminaries

The Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integral are
the extension of Dunford, Pettis, and Bocher integrals, respectively.
These integrals were defined and studied by Gordon [4]. He Showed
that Denjoy-Dunford(Denjoy-Bochner) integrable function on [a, b] is
Dunford(Bochner) integrable on some subinterval of [a, b] and that for
spaces that do not contains copy c0, a Denjoy-Pettis integrable func-
tion on [a, b] is Pettis integrable on some subinterval of [a, b]. In 2000,
Park [5] introduced the Denjoy extension of the Riemann and McShane
integral and proved some properties of these integral.

In this paper, we define and study the AP-Henstock extension of
Dunford, Pettis, and Bochner integrals of functions mapping [a, b] into
Banach space X, respectively.

Troughout this paper, X will denote a real Banach space and X∗ its
dual.

Let E be measurable set and let c be a real number. The density of
E at c is defined by
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dcE = lim
h→0+

µ(E ∩ (c− h, c + h))
2h

,

provided the limit exists. The point c is called a point of density of E if
DcE = 1 . The Ed represents the set of all point x ∈ E such that x is s
point of density of E.

A function F : [a, b] → R is said to be approximately differentiable at
c ∈ [a, b] if there exists a measurable set E ⊂ [a, b] such that c ∈ Ed and
limx→c

x∈E

f(x)−F (c)
x−c exists. The approximate derivative of F at c is denoted

by F ′
ap(c).

An approximate neighborhood(or ap-nbd) of x ∈ [a, b] is a measurable
set Sx ⊂ [a, b] containing x as a point of density. For every x ∈ E ⊂ [a, b],
choose an ap-nbd Sx ⊂ [a, b] of x. then we say that S = {Sx : x ∈ E} is
a choice on E. A tagged interval (x, [c, d]) is said to be subordinate to
the choice S = {Sx} if c, d ∈ Sx. Let P = {(xi, [ci, di]) : 1 ≤ i ≤ n} be
a finite collection of non-overlapping tagged intervals. If (xi, [ci, di]) is
subordinate to a choice S for each i , then we say that P is subordinate
to S. If P is subordinate to S and [a, b] = ∪n

i=1[ci, ci] , then we say that
P is a tagged partition of [a, b] that is subordinate to S

Definition 1.1. A function f : [a, b] → X is AP-Henstock integrable
on [a, b] if there exists a vector A ∈ X with the following property : for
each ε > 0 there exists a choice S on [a, b] such that ‖f(P ) − A‖ < ε
whenever P is a tagged partition of [a, b] that is subordinate to S where
f(P ) = (P )

∑
f(x) | I |. the vector A is called the AP-Henstock integral

of F on [a, b] and denoted by (AP )
∫ b
a f .

Recall that F : [a, b] → R is ACs on a measurable et E ⊂ [a, b] if for
each ε > 0 there exists a position number η and a choice S on E such
‖(P )

∑
F (I)‖ < ε for every finite collection P of non-overlapping tagged

intervals that is subordinate to S and satisfies (P )
∑ |I| < η , where |I|

is the Lebesgue measure of an interval I. The function F is ACGs on E
if E can be expressed as a countable union of measurable sets on each
of which F is ACs.

Definition 1.2. ([6]) A function f : [a, b] → X is AP-Denjoy inte-
grable on [a, b] if there exists an ACGs function F on [a, b] such that
F ′

ap = f almost everywhere on [a, b].

Theorem 1.3. ([6]) A function f : [a, b] → X is AP-Denjoy integrable
on [a, b] if and only if f is AP-Henstock integrable on [a, b]
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Definition 1.4. ([3])

(a) A function f : [a, b] → X is Denjoy-Dunford integrable on [a, b] if
for each x∗ in X∗ the function x∗f is Denjoy integrable on [a, b]
and if for every interval I in [a, b] there exists a vector x∗∗I in X∗∗

such that x∗∗I (x∗) =
∫
I x∗f for x∗ in X∗.

(b) A function f : [a, b] → X is Denjoy-Pettis integrable on [a, b] if
f is Denjoy-Dunford integrable on [a, b] and if x∗∗I ∈ X for every
interval I is [a, b].

(c) A function f : [a, b] → X is Denjoy-Bochner integrable on [a, b]
if there exists an ACG function F : [a, b] → X such that F is
approximately differentiable almost everywhere on [a, b] and F ′

ap =
f almost everywhere on [a, b].

2. AP-Henstock-Dunford and AP-Henstock-Pettis integra-
bility

we introduce the AP-Henstock-Dunford and AP-Henstock-Pettis in-
tegral of which is extension for Denjoy-Dunford and Denjoy-Pettis inte-
gral and investigate some properties of there integrals.

Definition 2.1. (a) A function f : [a, b] → X is AP-Henstock-
Dunford integrable on [a, b] if for each x∗ in X∗ the function x∗f
is AP-Henstock integrable on [a, b] and if for every interval I in
[a, b] there exists a vector x∗∗I in X∗∗ such that x∗∗I (x∗) =

∫
I “x∗f

for all x∗ in X∗.
(b) A function f : [a, b] → X is AP-Henstock-Pettis integrable on [a, b]

if f is AP-Henstock-Dunford integrable on [a, b] and x∗∗I ∈ X for
every interval I in [a, b].

(c) A function f : [a, b] → X is AP-Henstock-Bochner integrable on
[a, b] if there exists an ACGs function F : [a, b] → X such that
F is approximately differentiable almost everywhere on [a, b] and
such that F ′

ap = f almost everywhere on [a, b].

Throughout this paper, (APD)
∫ b
a and (APP )

∫ b
a f will denote the

AP-Henstock-Dunford integral and the AP-Henstock-Pettis integral of
F on [a, b].

The following theorem was proved by J. I. Games and J. Mendoza
[2] .
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Theorem 2.2. A function f : [a, b] → X is Denjoy-Dunford inte-
grable on [a, b] if and only if x∗f is Denjoy integrable on [a, b] for each
x∗ in X∗.

The following theorems can easily obtained by definition 2.1 and the-
orem 1.3.

Theorem 2.3. (a) A function f : [a, b] → X is Denjoy-Dunford
integrable on [a, b], then f is AP-Henstock-Dunford integrable on
[a, b].

(b) A function f : [a, b] → X is Denjoy-Pettis integrable on [a, b] , the
f is AP-Henstock-Pettis integrable on [a, b].

Theorem 2.4. (a) A function f : [a, b] → X is AP-Henstock-
Dunford integrable on [a, b], then f is is weakly measurable on
[a, b].

(b) A function f : [a, b] → X is a bounded and AP-Henstock-Dunford
integrable on [a, b], then f is Dunford integrable on [a, b].

Proof. Let f : [a, b] → X be AP-Henstock-Dunford integrable on
[a, b]. then x∗f is AP-Henstock integrable on [a, b] for all x∗ in X∗.
Hence x∗f is measurable[ [4], theorem 16.14 (d)]. Hence f is weakly
measurable. (b) Let f : [a, b] → X is a bounded and AP-Henstock-
Dunford integrable on [a, b] for x∗f is Lebesge integrable[[4], theorem
16.15 (a)]. Therefore f is Dunford integrable on [a, b].

The next corollary follows immediately from Pettis Measurability and
Theorem 2.3.

Corollary 2.5. If X is a separable Banach space and if f : [a, b] →
X is AP-Henstock-Dunford integrable on [a, b]. Then f is measurable.

Theorem 2.6. A function f : [a, b] → X is AP-Henstock-Dunford
integrable on [a, b] if and only if x∗f is AP-Henstock integrable on [a, b]
for each x∗ in X∗.

Proof. If a function f : [a, b] → X is AP-Henstock-Dunford integrable
on [a, b]. By definition, x∗f is AP-Henstock integrable on [a, b] for each
x∗ in X∗. Conversely, if x∗f is AP-Henstock integrable on [a, b] for each
X∗. Let B = {x∗ :‖ x∗ ‖≤ 1} and for each positive integer n and let
Vn = {x∗ ∈ B :

∫ b
a | x∗f |≤ n}. Then B =

⋃
n Vn and we show next

that each Vn is closed. Let y∗ be a limit point of Vn and let {x∗k} be a
sequence in Vn that converges to y∗. Since xk ∗f , x∗f are AP-Henstock
integrable, xk ∗ f , x∗f are measurable functions[[4], theorem 16.14 (d)].
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Also, the sequence {|x∗kf |} converges pointwise to |y∗f |. By the Fatou’s
Lemma, we have

∫ b

a
|x ∗ f | ≤ lim inf

k→∞

∫ b

a
| xk ∗ f |≤ n

Hence , y∗ ∈ Vn and we conclude that Vn is closed. By the Baire
Category theorem, there exist an integer N , a real number r > 0, and a
vector x∗0 ∈ B such that {x∗ : ‖x∗ − x∗0‖ ≤ r} ⊂ VN . For x∗ ∈ B,

sup
B
|
∫

E
xf |≤ sup

B

∫

E
| x∗f |≤ sup

B

∫ b

a
| x∗f |≤ 2N

r
,

the linear funtional TB is bounded and hence TE ∈ X∗∗.

Theorem 2.7. A function f : [a, b] → X os AP-Henstock-Dunford

integrable on each interval [c, d] ⊂ (a, b). If lim c→a+
d→b−

(APD)
∫ d
c f ex-

ists in X∗∗, then f is AP-Henstock-Dunford integrable on [a, b] and

(APD)
∫ b
a = lim c→a+

d→b−
(APD)

∫ d
c f

Proof. Let x∗∗0 = lim c→a+
d→b−

(APD)
∫ d
c f . By hypothesis, for each x∗ ∈

X∗, x∗f : [a, b] → R is AP-Henstock integrable on each interval [c, d] ⊂
(a, b) and

< x∗, x∗∗0 >= lim
c→a+
d→b−

< x∗, (APD)
∫ d

c
f >= lim

c→a+
d→b−

∫ d

c
x∗f.

Hence for each x∗ ∈ X∗, x∗f is AP-Henstock integrable on [a, b].
Thus f is AP-Henstock-Dundford integrable on [a, b] by theorem 2.6
and

< x∗, x∗∗0 >= lim
c→a+
d→b−

< x∗, (APD)
∫ d

c
f >=< x∗, (APD)

∫ b

a
f >

for all x∗ ∈ X∗. Hence (APD)
∫ b
a f = x∗∗0 = lim c→a+

d→b−
(APD)

∫ d
c f
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