JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 4, December 2010

THE INTEGRATION BY PARTS FOR THE M_{α} -INTEGRAL

JAE MYUNG PARK^{*}, DEOK HO LEE^{**}, JU HAN YOON^{***}, AND HOE KYOUNG LEE^{****}

ABSTRACT. In this paper, we define the M_{α} -integral and prove the integration by parts formula for the M_{α} -integral.

1. Introduction and preliminaries

It is well-known [8] that the integration by parts formula is valid for the Lebesgue, Denjoy, Perron, and Henstock integrals. In this paper, we prove the integration by parts formula for the M_{α} -integral.

Throughout this paper, [a, b] is a compact interval in R. Let D be a finte collection of interval-point pairs $\{(I_i, \xi_i)\}_{i=1}^n$, where $\{I_i\}_{i=1}^n$ are non-overlapping subintervals of [a, b], and let δ be a positive function on [a, b], i.e. $\delta : [a, b] \to R^+$.

(1) *D* is a δ -fine McShane partition of [a, b] if $I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in [a, b]$ for all i = 1, 2, ..., n, and $\bigcup_{i=1}^n I_i = [a, b]$.

(2) D is a δ -fine M_{α} -partition of [a, b] for a constant $\alpha > 0$ if it is a δ -fine McShane partition of [a, b] satisfying

$$\sum_{i=1}^{n} dist(\xi_i, I_i) < \alpha,$$

where $dist(\xi_i, I_i) = inf\{|t - \xi_i| : t \in \xi_i\}.$

(3) D is a δ -fine Henstock partition of [a, b] if $\xi_i \in I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for all i = 1, 2, ..., n, and $\bigcup_{i=1}^n I_i = [a, b]$.

Received October 27, 2010; Accepted November 09, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39.

Key words and phrases: M_{α} -integral, ACG_{α} function.

Correspondence should be addressed to Deok Ho Lee, dhlee2@kongju.ac.kr.

Given a δ -fine partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ we write

$$S(f,D) = \sum_{i=1}^{n} f(\xi_i) |I_i|$$

for integral sums over D, whenever $f:[a,b] \to R$.

2. Propertise of the M_{α} -integral

DEFINITION 2.1. Let $\alpha > 0$ be a constant. A function $f : [a, b] \to R$ is M_{α} -integrable if there exists a real number A such that for each $\epsilon > 0$ there exists a positive function $\delta : [a, b] \to R^+$ such that

$$|S(f,D) - A| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a, b]. A is called the M_{α} -integral of f on [a, b], and we write $A = \int_a^b f$ or $A = (M_{\alpha}) \int_a^b f$. The function f is M_{α} -integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is M_{α} -integrable on [a, b], and we write $\int_E f = \int_a^b f\chi_E$.

THEOREM 2.2. A function $f : [a, b] \to R$ is M_{α} -integrable if and only if for each $\epsilon > 0$ there exists a positive function $\delta : [a, b] \to R^+$ such that

$$|S(f, D_1) - S(f, D_2)| < \epsilon$$

for any δ -fine M_{α} -partitions D_1 and D_2 of [a, b].

Proof. Assume that $f:[a,b] \to R$ is M_{α} -integrable on [a,b]. For each $\epsilon > 0$ there is a positive function $\delta : [a, b] \to R^+$ such that

$$|S(f,D) - \int_{I_0} f| < \frac{\epsilon}{2}$$

for each δ -fine M_{α} -partition D of [a, b]. If D_1 and D_2 are δ -fine M_{α} -partitions, then

$$|S(f, D_1) - S(f, D_2)| \le |S(f, D_1) - \int_a^b f| + |\int_a^b -S(f, D_2)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Converesly, assume that for each $\epsilon > 0$, there is a positive function $\delta: [a,b] \to R^+$ such that $|S(f,D_m) - S(f,D_k)| < \epsilon$ for any δ -fine M_{α} partitions D_m and D_k of [a, b]. For each $n \in N$, choose $\delta_n : [a, b] \to R^+$ such that $|S(f, D_1) - S(f, D_2)| < \frac{1}{n}$ for any δ_n -fine M_α -partitions D_1 and D_2 of [a, b]. Assume that $\{\delta_n\}$ is decreasing. For each $n \in N$, let D_n be a δ_n -fine M_α -partition of [a, b]. Then $\{S(f, D_n)\}$ is a Cauchy sequence. Let $L = \lim_{n \to \infty} S(f, D_n)$ and let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \frac{\epsilon}{2}$ and $|S(f, D_n) - L| < \frac{\epsilon}{2}$ for all $n \ge N$. Let D be a δ_N -fine M_α -partition of [a, b]. Then

$$\begin{aligned} |S(f,D) - L| &\leq |S(f,D) - S(f,D_N)| + |S(f,D_N) - L| \\ &< \frac{1}{N} + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Hence, f is M_{α} -integrable on [a, b], and $\int_{a}^{b} f = L$.

We can easily get the following theorems.

THEOREM 2.3. Let $f : [a, b] \to R$. Then

(1) If f is M_{α} -integrable on [a, b], then f is M_{α} -integrable on every subinterval of [a, b].

(2) If f is M_{α} -integrable on each of the intervals [a, c] and [c, b], then f is M_{α} -integrable on [a, b] and $\int_{a}^{c} f + \int_{c}^{b} f = \int_{a}^{b} f$.

THEOREM 2.4. Let f and g be M_{α} -integrable functions on [a, b]. Then

(1) kf is M_{α} -integrable on [a, b] and $\int_{a}^{b} kf = k \int_{a}^{b} f$ for each $k \in R$, (2) f + g is M_{α} -integrable on [a, b] and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$.

LEMMA 2.5. (Saks-Henstock Lemma) Let $f : [a,b] \to R$ be M_{α} integrable on [a, b]. Let $\epsilon > 0$. Suppose that δ is a positive function on [a,b] such that

$$|S(f,D) - \int_a^b f| < \epsilon$$

for each δ -fine M_{α} -partition $D = \{(I_i, \xi_i)\}$ of [a, b]. If $D' = \{(I_i, \xi_i)\}_{i=1}^m$ is a δ -fine partial M_{α} -partition of [a, b], then

$$|S(f,D') - \sum_{i=1}^{m} \int_{I_i} f| \le \epsilon.$$

Proof. Assume that $D' = \{(I_i, \xi_i)\}_{i=1}^m$ is an arbitrary δ -fine partial M_{α} -partition of [a, b]. Let $\overline{[a, b] - \bigcup_{i=1}^{m} I_i} = \bigcup_{j=1}^{k} I'_j$.

Let $\eta > 0$. Since f is M_{α} -integrable on each I'_j , there is a positive function $\delta_j: I'_j \to R^+$ such that

$$|S(f,D_j) - \int_{I'_j} f| < \frac{\eta}{k}.$$

for each δ_i -fine M_{α} -partition of I'_i .

Assume that $\delta_j(\xi) \leq \delta(\xi)$ for all $\xi \in I'_j$. Let $D_0 = D' \cup D_1 \cup \cdots \cup D_k$. Then D_0 is a δ -fine M_{α} -partition of [a, b] and we have

$$|S(f, D_0) - \int_a^b f| < \epsilon.$$

Consequently, we have

$$\begin{split} |S(f, D') - \sum_{i=1}^{m} \int_{I_{i}} f| \\ &= |S(f, D_{0}) - \sum_{j=1}^{k} S(f, D_{j}) - (\int_{a}^{b} f - \sum_{j=1}^{k} \int_{I'_{j}} f)| \\ &\leq |S(f, D_{0}) - \int_{a}^{b} f| + \sum_{j=1}^{k} |S(f, D_{j}) - \int_{I'_{j}} f| \\ &< \epsilon + k \cdot \frac{\eta}{k} = \epsilon + \eta. \end{split}$$

Since $\eta > 0$ was arbitrary, we have $|S(f, D') - \sum_{i=1}^{m} \int_{I_i} f| \le \epsilon$. \Box

Now we recall the definition of the derivative of a function.

DEFINITION 2.6. A function $F : [a, b] \to R$ is differentiable at $\xi \in [a, b]$ if

$$\lim_{\mu \to 0} \frac{F(\xi + \mu) - F(\xi)}{\mu}$$

exists. The limit in case it exists, is called the derivative of F at ξ , and is denoted by $F'(\xi)$.

THEOREM 2.7. If the function $F : [a, b] \to R$ is differentiable on [a, b]with $f(\xi) = F'(\xi)$ for each $\xi \in [a, b]$, then $f : [a, b] \to R$ is M_{α} -integrable.

Proof. Let $\epsilon > 0$. By the definition of derivative, for each $\xi \in [a, b]$ there is a positive function $\delta : [a, b] \to R^+$ such that

$$\left|\frac{F(\zeta) - F(\xi)}{\zeta - \xi} - f(\xi)\right| < \frac{\epsilon}{2(\alpha + b - a)}$$

for all $\zeta \in [a, b]$ with $0 < |\zeta - \xi| < \delta(\xi)$. Assume that $D = \{(I_i, \xi_i)\}_{i=1}^n$ is a δ -fine M_{α} -partition of [a, b]. Then we have

$$\left|\sum_{i=1}^{n} [f(\xi_i)|I_i| - F(I_i)]\right| \le \sum_{i=1}^{n} |f(\xi_i)|I_i| - F(I_i)|$$
$$< \frac{\epsilon}{(\alpha+b-a)} \sum_{i=1}^{n} (dist(\xi_i, I_i) + |I_i|)$$
$$< \frac{\epsilon}{(\alpha+b-a)} (\alpha+b-a) = \epsilon.$$

Hence, $f : [a, b] \to R$ is M_{α} -integrable on [a, b].

DEFINITION 2.8. Let $\alpha > 0$ be a constant. Let $F : [a, b] \to R$ and let E be a subset of [a, b].

(a) F is said to be AC_{α} on E if for each $\epsilon > 0$ there exist a constant $\eta > 0$ and a positive function $\delta : [a, b] \to R^+$ such that $|\sum_{i=1} F(I_i)| < \epsilon$ for each δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}$ of [a, b] satisfying $\xi_i \in E$ and $\sum_i |I_i| < \eta$.

(b) F is said to be ACG_{α} on E if E can be expressed as a countable union of sets on each of which F is AC_{α} .

By considering positive and negative parts, it is clear that there is no change if the part $|\sum_i F(I_i)| < \epsilon$ of the above definition is written as $\sum_i |F(I_i)| < \epsilon$.

THEOREM 2.9. If a function $f : [a, b] \to R$ is M_{α} -integrable on [a, b] with the primitive F, then F is ACG_{α} on [a, b].

Proof. By the definition of the M_{α} -integral and the Saks-Henstock Lemma, for each $\epsilon > 0$ there is a positive function $\delta : [a, b] \to R^+$ such that

$$\left|\sum_{i=1}^{n} [f(\xi_i)|I_i| - F(I_i)]\right| \le \epsilon$$

for each δ -fine partial M_{α} -partition $D = \{(I_i, \xi_i)\}$ of [a, b].

Assume that $E_n = \{\xi \in [a, b] : n - 1 \le |f(\xi)| < n\}$ for each $n \in \mathbb{N}$. Then we have $[a, b] = \bigcup E_n$. To show that F is AC_α on each E_n , fix n and take a δ -fine partial M_α -partition $D_0 = \{(I_i, \xi_i)\}$ of [a, b] satisfying

 $\xi_i \in E_n$ for all *i*. If $\sum_i |I_i| < \frac{\epsilon}{n}$, then

$$\begin{aligned} |F(I_i)| &\leq \left|\sum_{i} [F(I_i) - f(\xi_i) \cdot |I_i|]\right| + \left|\sum_{i} f(\xi_i) |I_i|\right| \\ &\leq \left|\sum_{i} [F(I_i) - f(\xi_i) |I_i|]\right| + \sum_{i} |f(\xi_i)| \cdot |I_i| \\ &\leq \epsilon + n \sum_{i} |I_i| < 2\epsilon. \end{aligned}$$

Now we recall the definitions of the McShane and Henstock integrals.

A function $f : [a, b] \to R$ is McShane integrable if there exists a real number A such that for each $\epsilon > 0$ there exists a positive function $\delta : [a, b] \to R^+$ such that

$$S(f, D) - A| < \epsilon$$

for each δ -fine McShane partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a, b].

A function $f : [a, b] \to R$ is Henstock integrable if there exists a real number A such that for each $\epsilon > 0$ there exists a positive function $\delta : [a, b] \to R^+$ such that

$$|S(f,D) - A| < \epsilon$$

for each δ -fine Henstock partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a, b].

Since every Henstock partition is an M_{α} -partition and every M_{α} -partition is a McShane partition, we get the following theorem.

THEOREM 2.10. Let $f : [a, b] \to R$ be a function.

(a) If f is McShane integrable on [a, b], then f is M_{α} -integrable on [a, b].

(b) If f is M_{α} -integrable on [a, b], then f is Henstock integrable on [a, b].

The following Theorem is well-known [12].

THEOREM 2.11. If a function $f : [a, b] \to R$ is M_{α} -integrable on [a, b]if and only if there exists an ACG_{α} function F on [a, b] such that F' = falmost everywhere on [a, b].

3. Integration by parts

THEOREM 3.1. If F is ACG_{α} on [a, b], then F is continuous on [a, b].

Proof. Let $[a, b] = \bigcup_{n=1}^{\infty} E_n$ where F is AC_{α} on each E_n . Let $c \in [a, b]$ and choose an index n such that $c \in E_n$. Let $\epsilon > 0$. Since F is AC_{α} on E_n , there exist a positive number $\eta > 0$ and a positive function $\delta : [a, b] \to R^+$ such that $\sum_i |F(I_i)| < \epsilon$ for each δ -fine partial M_{α} partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a, b] satisfying $\sum_i |I_i| < \eta$ and $\xi_i \in E_n$. Let $r = \min\{\delta(c), \eta\}$. Suppose that $x \in (c - r, c + r) \cap I_0$. Then ([c, x], c)(or ([x, c], c)) is a δ -fine partial M_{α} -partition with $|x - c| < \eta$. Hence, $|F(x) - F(c)| < \epsilon$. It follows that F is continuous at c.

THEOREM 3.2. If F and G are ACG_{α} on [a, b], then FG is ACG_{α} on [a, b].

Proof. Since F and G are continuous on [a, b] by Theorem 3.1, there exist real numbers M_1 and M_2 with $M_1, M_2 \ge 1$ such that $|F(t)| \le M_1$ and $|G(t)| \le M_2$ for each $t \in [a, b]$. Since F is ACG_α on [a, b], we have $[a, b] = \bigcup_{n=1}^{\infty} E_n$ and F is AC_α on each E_n . Since G is ACG_α on [a, b], we have $[a, b] = \bigcup_{n=1}^{\infty} A_k$ and G is AC_α on each A_k . Then $[a, b] = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} (E_n \cap A_k)$.

To show that FG is AC_{α} on each $E_n \cap A_k$, fix n and k. Let $\epsilon > 0$. Since F is AC_{α} on E_n , there exist a constant $\eta_1 > 0$ and a positive function $\delta_1 : [a, b] \to R^+$ such that

$$\sum_{i=1}^{n} |F(I_i)| < \frac{\epsilon}{2M_2}$$

for each δ_1 -fine partial M_{α} -partition $\{(I_i, \xi_i)\}_{i=1}^p$ of [a, b] satisfying $\sum_{i=1} |I_i| < \eta_1$ and $\xi_i \in E_n$. Since G is AC_{α} on A_k , there exist a constant $\eta_2 > 0$ and a positive function $\delta_2 : [a, b] \to R^+$ such that

$$\sum_{j=1}^{n} |G(J_j)| < \frac{\epsilon}{2M_1}$$

for each δ_2 -fine partial M_{α} -partition $\{(J_j, \zeta_j)\}_{j=1}^q$ of [a, b] satisfying $\sum_{j=1} |J_j| < \eta_2$ and $\zeta_j \in A_k$.

Let $\delta = \min\{\delta_1, \delta_2\}$ and $\eta = \min\{\eta_1, \eta_2\}$. Let $D = \{([c_i, d_i], \xi_i)\}_{i=1}^m$ be a δ -fine partial M_{α} -partition satisfying $\sum_{i=1} |d_i - c_i| < \eta$ and $\xi_i \in E_n \cap A_k$. Then we have

$$\sum_{i=1}^{m} |F(d_i)G(d_i) - F(c_i)G(c_i)|$$

$$\leq \sum_{i=1}^{m} |F(d_i)G(d_i) - F(c_i)G(d_i)| + \sum_{i=1}^{m} |F(c_i)G(d_i) - F(c_i)G(c_i)|$$

$$= \sum_{i=1}^{m} |G(d_i)| |F(d_i) - F(c_i)| + \sum_{i=1}^{m} |F(c_i)| |G(d_i) - G(c_i)|$$

$$\leq M_2 \sum_{i=1}^{m} |F(d_i) - F(c_i)| + M_1 \sum_{i=1}^{m} |G(d_i) - G(c_i)|$$

$$< M_2 \frac{\epsilon}{2M_2} + M_1 \frac{\epsilon}{2M_1} = \epsilon$$

FG is AC_{α} on $E_n \cap A_k$.

Hence, FG is AC_{α} on $E_n \cap A_k$.

THEOREM 3.3. Let $f : [a, b] \to R$ be M_{α} -integrable on [a, b] and let $F(x) = (M_{\alpha}) \int_{a}^{x} f$ for each $x \in [a, b]$. If $G : [a, b] \to R$ is AC on [a, b], then fG is M_{α} -integrable on [a, b] and

$$(M_{\alpha})\int_{a}^{b} fG = F(b)G(b) - (L)\int_{a}^{b} FG'.$$

Proof. Since F is ACG_{α} on [a, b] and the AC function G is AC_{α} on [a, b], FG is ACG_{α} on [a, b] by Theorem 3.2. Hence, (FG)' is M_{α} integrable on [a, b]. Since F is bounded and measurable, FG' is Lebesgue integrable on [a, b]. Since fG = (FG)' - FG' almost everywhere on [a, b], fG is M_{α} -integrable on [a, b] and

$$(M_{\alpha})\int_{a}^{b} fG = (M_{\alpha})\int_{a}^{b} (FG)' - (L)\int_{a}^{b} FG'$$
$$= F(b)G(b) - (L)\int_{a}^{b} FG'$$

COROLLARY 3.4. Let $f : [a, b] \to R$ be M_{α} -integrable on [a, b] and let $F(x) = (M_{\alpha}) \int_{a}^{x} f$ for each $x \in [a, b]$. If $G : [a, b] \to R$ is AC on [a, b], then fG is M_{α} -integrable on [a, b] and

$$(M_{\alpha})\int_{a}^{b} fG = F(b)G(b) - \int_{a}^{b} FdG,$$

where the second integral is the Riemann-Stieltjes integral of F with respect to G.

Proof. By Theorem 3.3, the function fG is M_{α} -integrable on [a, b]. Since F is continuous and G is AC on [a, b],

$$(L)\int_{a}^{b}FG' = \int_{a}^{b}FdG.$$

Hence,

$$\int_{a}^{b} fG = F(b)G(b) - \int_{a}^{b} FdG.$$

THEOREM 3.5. Let $f : [a,b] \to R$ be M_{α} -integrable on [a,b] and let $F(x) = (M_{\alpha}) \int_{a}^{x} f$ for each $x \in [a,b]$. If $G : [a,b] \to R$ is an ACG_{α} function of bounded variation on [a,b], then fG is M_{α} -integrable on [a,b] and

$$(M_{\alpha})\int_{a}^{b} fG = F(b)G(b) - \int_{a}^{b} FdG$$

Proof. Since F is ACG_{α} on [a, b], FG is ACG_{α} on [a, b] by Theorem 3.2. Hence, (FG)' is M_{α} -integrable on [a, b]. Since F is bounded and measurable, FG' is Lebesgue integrable on [a, b]. Since fG = (FG)' - FG' almost everywhere on [a, b], fG is M_{α} -integrable on [a, b] and hence, fG is Henstock integrable on [a, b]. By [8, Theorem 12.21],

$$(M_{\alpha})\int_{a}^{b} fG = (H)\int_{a}^{b} fG$$
$$= F(b)G(b) - \int_{a}^{b} FdG.$$

References

- B. Bongiorno, Un nvovo interale il problema dell primitive, Le Matematiche, 51 (1996), no. 2, 299-313.
- [2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesque integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), no. 1, 117-126.
- [3] A. M. Bruckner, R. J. Fleissner, and J. Fordan, The minimal integral which includeds Lebesque integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293.
- [4] S. J. Chad, B. S. Lee, G. M. Lee, and D. S. Kim, *Denjoy-type integrals of Banach-valude functions*, Comm. Korean. Math. Soc. **13** (1998), no. 2, 307-316.
- [5] D. H. Fremlin, The Henstock and McShane integrals of vector-valued functions, Illinois J. Math. 38 (1994), 471-479.
- [6] D. H. Fremlin, The McShane, PU and Henstock integrals of Banach valued functions, Cze. J. Math. 52 (127), (2002), 609-633.
- [7] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127-147.

869

- [8] R. A. Gordon, *The Integrals of Lebegue, Denjoy, Perron, and Henstock*, Graduate Studies in Math.4 Amer.Math.Soc. (1994).
- [9] R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- [10] R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, 1991.
- [11] J. M. Park and D. H. Lee, The Denjoy extension of the Riemann and McShane integrals, Cze J. Math. 50 (2000), no. 125, 615-625.
- [12] J. M. Park, H. W. Ryu and H. K. Lee, *The* M_{α} *-integral*, Chungcheong J. Math. **23** (2010), no. 1, 99-108.
- [13] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV (2002), 143-153
- [14] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, 2005.
- [15] L. P. Yee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Education Kongju University Kongju 314-701, Republic of Korea *E-mail*: dhlee2@kongju.ac.kr

Department of Mathematics Education Chungbuk University Chongju 361-7631, Republic of Korea *E-mail*: yoonjh@chungbuk.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: ghlrud98@nate.com