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THE INTEGRATION BY PARTS FOR THE
M,-INTEGRAL
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ABSTRACT. In this paper, we define the M,-integral and prove the
integration by parts formula for the M,-integral.

1. Introduction and preliminaries

It is well-known [8] that the integration by parts formula is valid for
the Lebesgue, Denjoy, Perron, and Henstock integrals. In this paper, we

prove the integration by parts formula for the M,-integral.

Throughout this paper, [a,b] is a compact interval in R. Let D be
a finte collection of interval-point pairs {(I;, &)}, where {;}} , are
non-overlapping subintervals of [a, b], and let § be a positive function on

[a,b], i.e. §:[a,b] — RT.

(1) D is a d-fine McShane partition of [a, b] if I; C (& —0(&), &+ (&)

and & € [a,b] for all i =1,2,...,n, and U}, I; = [a, b].

(2) D is a o-fine M,-partition of [a,b] for a constant a > 0 if it is a

d-fine McShane partition of [a, b] satisfying
Z dist(éi, IZ‘) < a,
i=1

where dist(&;, I;) = inf{|t — &| : t € &}

(3) D is a d-fine Henstock partition of [a,b] if §; € I; C (§,—0(&), &+

§(&) for all i =1,2,...,n, and U, I; = [a,b].
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Given a d-fine partition D = {(I;, &)}, we write
S(f,D)=>_ f(&)I1]
i=1

for integral sums over D, whenever f : [a,b] — R.

2. Propertise of the M,-integral

DEFINITION 2.1. Let a > 0 be a constant. A function f : [a,b] — R
is M,-integrable if there exists a real number A such that for each ¢ > 0
there exists a positive function 6 : [a,b] — R such that

IS(f, D) — Al <e

for each d—fine M,-partition D = {(I;, &)}l of [a,b]. A is called the
M,-integral of f on [a,b], and we write A = fabf or A= (M,) f; f.

The function f is M,-integrable on the set E C [a,b] if the function
[XE is My-integrable on [a,b], and we write [, f = fab fXE-

THEOREM 2.2. A function f : [a,b] — R is M,-integrable if and only
if for each € > 0 there exists a positive function § : [a,b] — R such that

|S(faD1) _S(f7D2)| <e€
for any o-fine M, -partitions Dy and D3 of [a,b).

Proof. Assume that f : [a,b] — R is M,-integrable on [a, b]. For each
€ > 0 there is a positive function ¢ : [a,b] — R™ such that

S(.D) -~ | 1<
1o

for each d-fine M,-partition D of [a,b]. If D; and Dy are d-fine M,
-partitions, then

b b
S(f,D1) — S(f.Dy)| < |S(f, Dy) - / £+ / _S(f.Dy)|

<€+E_
9 2—6.

Converesly, assume that for each € > 0, there is a positive function
§ : [a,b] — RT such that |S(f, Dy,) — S(f, Dx)| < € for any §-fine M,-
partitions D,, and Dy, of [a,b]. For each n € N, choose 4y, : [a,b] — R
such that |S(f, D1)—S(f, D2)| < £ for any 6,-fine M,-partitions D; and
Dy of [a,b]. Assume that {0, } is decreasing. For each n € N, let D,, be
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a Op-fine My-partition of [a,b]. Then {S(f, D,)} is a Cauchy sequence.
Let L = lim,, . S(f, D) and let € > 0. Choose N such that % <3
and |S(f,Dy) — L| < § for all n > N. Let D be a dy-fine M,-partition
of [a,b]. Then

€

SR
N 259737 ¢

Hence, f is M,-integrable on [a, b], and f;f = L. O
We can easily get the following theorems.
THEOREM 2.3. Let f :[a,b] — R. Then
(1) If f is Mq-integrable on |a,b], then f is M,-integrable on every

subinterval of [a, b].
(2) If f is M,-integrable on each of the intervals [a, c| and [c,b], then

f is M-integrable on [a, b] and facf + fcbf = ff f.
THEOREM 2.4. Let f and g be M,-integrable functions on |a,b].

Then
(1) kf is My-integrable on [a,b] and ["kf =k [* f for cach k € R,

(2) f + g is M,-integrable on [a,b] and f;(f +9) = f;f + fabg'

LEMMA 2.5. (Saks-Henstock Lemma) Let f : [a,b] — R be M,-
integrable on [a,b]. Let € > 0. Suppose that § is a positive function on

[a, b] such that
b
—/ fl<e

for each 0-fine My-partition D = {(I;,&)} of [a,b]. If D" = {(I;, &)},
is a 0-fine partial M,-partition of [a b], then

15( /f|<e

Proof. Assume that D’ = {(Ii,&)}izl is an arbitrary d-fine partial
M, -partition of [a,b]. Let [a,b] — U, I; = U;‘?:llj’..

Let n > 0. Since f is M,-integrable on each I J’», there is a positive
function d; : I} — RT such that

DJ)/I(f|<Z~

for each 6;-fine M,-partition of Ij’-.
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Assume that 6;(£) < 0(§) for all § € I} Let Do = D'UDU---UDy.
Then Dy is a d-fine M,-partition of [a, b] and we have

b
S(.00) - [ fl<e
Consequently, we have

s<f,D’>—Z/‘f|

b k
S(f. Do) — ZSf, ([ 1-% [ 1

a j=1 I

< \S(f,Do)—/a f|+j§::1\5(f,Dj)—/I;f!

<6+k“%:6+77.

Since n > 0 was arbitrary, we have [S(f,D") — > ", fI fl <e O

Now we recall the definition of the derivative of a function.

DEFINITION 2.6. A function F : [a,b] — R is differentiable at & €
[a, b] if

iy FE+p) — F(§)
pn—=0 ©

exists. The limit in case it exists, is called the derivative of F' at £, and
is denoted by F'(&).

THEOREM 2.7. If the function F : [a,b] — R is differentiable on [a, b]
with f(§) = F'(§) for each § € [a,b], then f : [a,b] — R is M,-integrable.

Proof. Let € > 0. By the definition of derivative, for each & € [a, b]
there is a positive function ¢ : [a,b] — R such that

F(Q) —F() €
¢—¢ 1(§) <2(a+b—a)
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for all ¢ € [a,b] with 0 < [( —&| < 6(&). Assume that D = {(1;, &)},
is a d-fine M,-partition of [a,b]. Then we have

| SUEInl - Fl| < ST 155 - F(5)
i=1 i=1

n
€

—_— dist iy L I;
< G L 1) + 5D
€
- b— = €.
<(a+b—a)(a+ a) =e
Hence, f : [a,b] — R is M,-integrable on [a, b]. O

DEFINITION 2.8. Let o > 0 be a constant. Let F : [a,b] — R and let
E be a subset of [a, b].

(a) F is said to be AC,, on E if for each € > 0 there exist a constant
n > 0 and a positive function § : [a,b] — R such that |Y,_; F(I;)| <€
for each 0-fine partial M,-partition D = {(I;,&;)} of [a,b] satisfying
&eFEand ), || <n.

(b) F is said to be ACG,, on E if E can be expressed as a countable
union of sets on each of which F' is AC,,.

By considering positive and negative parts, it is clear that there is no
change if the part | Y, F(I;)| < € of the above definition is written as

2 lF(L)] < e

THEOREM 2.9. If a function f : [a,b] — R is M,-integrable on [a, b]
with the primitive F', then F is ACG, on [a,b|.

Proof. By the definition of the M,-integral and the Saks-Henstock
Lemma, for each € > 0 there is a positive function ¢ : [a,b] — R™ such
that

Sl - P < e
=1

for each ¢-fine partial M,-partition D = {(I;,&;)} of [a,b].

Assume that E, = {£ € [a,b] : n—1 < |f(§)| < n} for each n € N.
Then we have [a,b] = UE,,. To show that F' is AC, on each E,, fix n
and take a 0-fine partial My-partition Dy = {(I;,&;)} of [a, b] satisfying
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§i € By foralld. If )7 |I;] < &, then

L) < \Z f(&)-
< \Z[FU (&)

< e+nZ|[i| < 2e.

i

Z!fsz L

O

Now we recall the definitions of the McShane and Henstock integrals.

A function f : [a,b] — R is McShane integrable if there exists a
real number A such that for each € > 0 there exists a positive function
§ : [a,b] — RT such that

[S(f, D) — Al <€

for each ¢-fine McShane partition D = {(I;, &)}, of [a, b].

A function f : [a,b] — R is Henstock integrable if there exists a
real number A such that for each ¢ > 0 there exists a positive function
d :[a,b] — RT such that

IS(f, D) — Al <e

for each ¢-fine Henstock partition D = {(1;,&;)} of [a,b].
Since every Henstock partition is an M- partltlon and every M-
partition is a McShane partition, we get the following theorem.

THEOREM 2.10. Let f : [a,b] — R be a function.

(a) If f is McShane integrable on [a,b], then f is M,-integrable on
[a, b].

(b) If f is M,-integrable on [a,b], then f is Henstock integrable on
[a, b].

The following Theorem is well-known [12].

THEOREM 2.11. If a function f : [a,b] — R is M,-integrable on [a, D]
if and only if there exists an ACG,, function F on [a,b] such that F' = f
almost everywhere on [a, b].

3. Integration by parts

THEOREM 3.1. If F' is ACGy on [a,b], then F' is continuous on |a, b].
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Proof. Let [a,b] = U | E,, where F'is AC,, on each E,,. Let ¢ € [a, D]
and choose an index n such that ¢ € E,,. Let ¢ > 0. Since F' is AC,,
on F,, there exist a positive number 17 > 0 and a positive function
§ : [a,b] — RT such that >, |F(I;)] < € for each d-fine partial M,-
partition D = {(1;, &)}, of [a,b] satisfying >, |I;| < n and & € E,.
Let r = min{d(c),n}. Suppose that x € (¢ — r,c+ r) N Ip. Then
([e,x],c)(or ([z,c],c)) is a d-fine partial M,-partition with |z — ¢| < n.
Hence, |F(z) — F(c)| < e. It follows that F' is continuous at c. O

THEOREM 3.2. If F and G are ACG, on |a,b], then FG is ACG,,
on [a,b].

Proof. Since F and G are continuous on [a, b] by Theorem 3.1, there
exist real numbers M; and My with M;, My > 1 such that |F(t)| < M;
and |G(t)| < My for each t € [a,b]. Since F is ACG, on [a,b], we
have [a,b] = U2, E, and F' is AC, on each E,. Since G is ACG,
on [a,b], we have [a,b] = U2 A, and G is AC, on each Aj. Then
a0 = U2y U2, (En N Ay).

To show that F'G is AC, on each E, N A, fix n and k. Let ¢ > 0.
Since F'is AC, on E,, there exist a constant 77 > 0 and a positive
function ¢y : [a,b] — R such that

n
€
F(I;
>oIF) < g

for each d;-fine partial M,-partition {(I;, &) }r_; of [a, b] satisfying >,
|I;] < m and & € E,. Since G is AC, on Ay, there exist a constant
n2 > 0 and a positive function ds : [a,b] — R™ such that

€

D161 < 53

for each do-fine partial Mo-partition {(J;, (;)}7_; of [a, b] satisfying 3, _,
|Jj‘ < 12 and Cj € Ag.

Let 6 = min{d1,d2} and n = min{n,n2}. Let D = {([c;, d;], &)}y
be a d-fine partial M,-partition satisfying > ., |d; — ¢;| < n and & €
E, N Aj. Then we have

Z |F(di)G(di) — F(ci)G(ci)]
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|G (da) || F(di) — F(ei)| + Z |F(e)l|G(di) — Gci)

I
NE

1

.
I

m
<M Z F(c;) +M1Z!G — G(ci)
i=1 =1
€
Mo—— + M =
< 22M2 ST
Hence, FG is AC, on E, N Ay. O

THEOREM 3.3. Let f : [a,b] — R be M,-integrable on [a,b] and let
F(z) = (M,) [ f for each x € [a,b]. If G : [a,b] — R is AC on |a,b],
then fG is M,-integrable on [a,b] and

b b
M,) / £G = F)G(b) — (L) / FG.

Proof. Since F is ACG,, on [a,b] and the AC function G is AC,
on [a,b], FG is ACG,, on [a,b] by Theorem 3.2. Hence, (FG)" is M,-
integrable on [a, b]. Since F is bounded and measurable, FG' is Lebesgue
integrable on [a, b]. Since fG = (FG)'— FG' almost everywhere on [a, ],
fG is M,-integrable on [a, b] and

/'ﬂz /(FG) <>1de

= F(b)G(b) — (L) / e
O

COROLLARY 3.4. Let f : [a,b] — R be M,-integrable on [a,b| and let
F(z) = (M) [ f for each x € [a,b]. If G : [a,b] — R is AC on |a,b],
then fG is M,-integrable on [a,b] and

<M@/UG=F@&@—/UML

where the second integral is the Riemann-Stieltjes integral of F' with
respect to G.

Proof. By Theorem 3.3, the function fG is M,-integrable on |[a,b].
Since F' is continuous and G is AC on [a, b],

(L)/abFG’:/adeG.
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Hence,

/ab G = F()G(b) /ab FdG.
0

THEOREM 3.5. Let f : [a,b] — R be My-integrable on [a,b] and let
F(z) = (My) [7 f for each z € [a,b]. If G : [a,b] — R is an ACG,
function of bounded variation on [a,b], then fG is M,-integrable on
[a, b] and

(M.) / "t = PG / e

Proof. Since F is ACG,, on [a,b], FG is ACG, on [a,b] by Theorem
3.2. Hence, (FG)' is M,-integrable on [a,b]. Since F is bounded and
measurable, F'G’ is Lebesgue integrable on [a,b]. Since fG = (FG)I —
FG" almost everywhere on [a, b], fG is M,-integrable on [a, b] and hence,
fG is Henstock integrable on [a,b]. By [8, Theorem 12.21],

(Ma)/absz(H)/abfG

= F(b)G(b) — /deG.

a
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