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h−STABILITY OF THE NONLINEAR PERTURBED
DIFFERENTIAL SYSTEMS
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Abstract. In this paper, we investigate h−stability of the nonlin-
ear perturbed differential systems.

1. Introduction

As is traditional in a pertubation theory of nonlinear differential
equations, the behavior of solutions of a perturbed equation is deter-
mined in terms of the behavior of solutions of an unperturbed equation.
There are three useful methods for studying the qualitative behavior
of the solutions of perturbed nonlinear system of differential equations:
the method of variation of constants formula, the second method of
Lyapunov and the use of inequalities.

The notion of h-stability (hS) was introduced by Pinto [11, 12] with
the intention of obtaining results about stability for a weakly stable sys-
tem (at least, weaker than those given exponential asymptotic stability)
under some perturbations. That is, Pinto extended the study of ex-
ponential asymptotic stability to a variety of reasonable systems called
h-systems.

Choi and Ryu [3] studied the important properties about hS for the
various differential systems. Recently, Choi and Koo [4] ,and Goo [7]
obtained results for hS of nonlinear differential systems via t∞-similarity.

We investigated hS for the nonlinear Volterra integro-differential sys-
tem [9] and for the linear perturbed Volterra integro-differential systems
[8]. In this paper, we investigate h−stability of the nonlinear perturbed
differential systems.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C[R+×Rn,Rn], R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continu-
ous on Rn×Rn and f(t, 0) = 0. For x ∈ Rn, let |x| = (

∑n
j=1 x2

j )
1/2. For

an n× n matrix A, define the norm |A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =

x0, existing on J = [t0,∞). Then we can consider the associated vari-
ational systems around the zero solution of (2.1) and around x(t), re-
spectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.3)

The fundamental matrix Φ(t, t0, x0) of (2.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.2).
We recall some notions of h-stability [12] and the notion of t∞-

similarity [5].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(hS) h−stable if there exist c ≥ 1, δ > 0, and a positive bounded
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| < δ,
(hSV) h−stable in variation if (2.3) (or z = 0 of (2.3)) is h-stable.

Let M denote the set of all n × n continuous matrices A(t) defined
on R+ = [0,∞) and N be the subset of M consisting of those non-
singular matrices S(t) that are of class C1 with the property that S(t)
and S−1(t) are bounded. The notion of t∞-similarity in M was intro-
duced by Conti [5]. Consider two differential systems x′ = A(t)x(t) and
y′ = B(t)y(t), t ∈ R+.
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Definition 2.2. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [5, 9].

In this paper, we investigate h-stability of the nonlinear perturbed
differential systems.

We give some related properties that we need in the sequal.

Lemma 2.3. [13] The linear system

x′ = A(t)x, x(t0) = x0,(2.5)

where A(t) is an n×n continuous matrix, is hS if and only if there exist
c ≥ 1 and a positive bounded continuous function h defined on R+ such
that

|φ(t, t0, x0)| ≤ c h(t) h(t0)−1(2.6)

for t ≥ t0 ≥ 0, where φ(t, t0, x0) is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.7)

where g ∈ C[R+ × Rn,Rn]. Let y(t) = y(t, t0, y0) denote the solution of
(2.7) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.4. If y0 ∈ Rn, for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.5. [3] If the zero solution of (2.1) is hS, then the zero
solution of (2.2) is hS.
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Theorem 2.6. [4] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0,
x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (2.2) is hS, then the solution z = 0 of (2.3)is hS.

Theorem 2.7. [11] Let f ∈ C[R+ × Rn,Rn], and fx = ∂f/∂x exist
and be continuous on R+ × Rn. Assume that x(t, t0, x0) and x(t, t0, y0)
are the solutions of (2.1) through (t0, x0) and (t0, y0), respectively, exist-
ing for t ≥ t0, such that x0, y0 belong to a convex subset of Rn. Then,
for t ≥ t0,

x(t, t0, x0)− x(t, t0, y0) =
[ ∫ 1

0
Φ(t, t0, sx0 + (1− s)y0)ds)

]
(x0 − y0).

The following theorem is a modification of Theorem 3.6 in [3].

Theorem 2.8. [3] Suppose that the solution x = 0 of (2.1) is hS with
a nondecreasing function h and the perturbed term g in (2.7) satisfies

|Φ(t, s, z) k(t, z)| ≤ γ(s)|z|, t ≥ t0 ≥ 0,

where γ ∈ C(R+,R+) and
∫∞
t0

γ(s)ds < ∞. Then y = 0 of (2.7) is hS.

The following comparison result is well-known.

Lemma 2.9. [11] Let the following condition hold for functions u(t), v(t)
∈ C[[t0,∞),R+) and k(t, u) ∈ C[[t0,∞)× R+,R+):

u(t)−
∫ t

t0

k(s, u(s))ds ≤ v(t)−
∫ t

t0

k(s, v(s))ds,

t ≥ t0 and k(s, u) is strictly in u for each fixed s ≥ 0. If u(t0) < v(t0),
then u(t) < v(t), t ≥ t0 ≥ 0.

3. Main results

In this section, we investigate hS for the nonlinear perturbed differ-
ential systems.

Theorem 3.1. If the solution z = 0 of (2.3) is hS, then the solution
v = 0 of (2.2) is hS.

Proof. Suppose the solution z = 0 of (2.3) is hS. Let x(t) = x(t, t0, x0)
be any solution of (2.1). Then by Theorem 2.7, we have

x(t, t0, x0) =
[ ∫ 1

0
Φ(t, t0, sx0)ds

]
x0.
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By Lemma 2.3, since the solution z = 0 of (2.3) is hS, there exist c ≥ 1
and a positive bounded continuous function h on R+ such that

|Φ(t, t0, x0)| ≤ c h(t) h(t0)−1

for t ≥ t0 ≥ 0, where Φ(t, t0, x0) is a fundamental matrix of (2.3). From
(2.6), we have

|x(t, t0, x0)| ≤
∫ 1

0
|Φ(t, t0, sx0)| ds |x0| ≤ c |x0|h(t)h(t0)−1.

This implies that the zero solution of (2.1) is hS. Therefore, by Theorem
2.5, the solution v = 0 of (2.2) is hS and so the proof is complete.

Corollary 3.2. Suppose that the solution z = 0 of (2.3) is hS with
a nondecreasing function h, and for all t ≥ t0 ≥ 0,

|Φ(t, s, z) g(t, z)| ≤ γ(s)|z|,
where γ ∈ C(R+,R+) and

∫∞
t0

γ(s)ds < ∞. Then, y = 0 of (2.7) is hS.

Proof. It follows from Theorem 3.1 that the solution v = 0 of (2.2) is
hS. In the proof of Theorem 3.1, the solution x = 0 of (2.1) is hS. Hence,
by Theorem 2.8, the solution y = 0 of (2.7) is hS. This completes the
proof.

We also examine the properties of hS for the perturbed system of
(2.7)

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C[R+ × Rn,Rn] and g(t, 0) = 0.

Theorem 3.3. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0
of (2.1) is hS, and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ γ(s)|y(s)|, t ≥ t0 ≥ 0,

where γ ∈ C(R+,R+) and
∫∞
t0

γ(s)ds < ∞. Then, the solution y = 0 of

(3.1) is hS.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.5,
since the solution x = 0 of (2.1) is hS, the solution v = 0 of (2.2) is hS.
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Therefore, by Theorem 2.6, the solution z = 0 of (2.3) is hS. By Lemma
2.4, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t) h(s)−1γ(s)|y(s)|ds

Set u(t) = |y(t)|h(t)−1. Then, by Gronwall’s inequality, we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1e
c2

∫ t
t0

γ(s)ds

≤ c|y0|h(t) h(t0)−1, c = c1e
c2

∫∞
t0

γ(s)ds

It follows that y = 0 of (3.1) is hS. Hence, the proof is complete.

Theorem 3.4. For the system (3.1), suppose that

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ r(s, |y|),

where r ∈ C[R+ × R+,R+] is strictly increasing in u for each fixed
t ≥ t0 ≥ 0 with r(t, 0) = 0. Assume also that x = 0 of (2.1) is hSV with
the nonincreasing function h. Consider the scalar differential equation

u′ = cr(t, u), u(t0) = u0 = c|y0|.(3.2)

If u = 0 of (3.2) is hS, then y = 0 of (3.1) is also hS whenever
u0 = c|y0|.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Lemma 2.4,
we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds,

where Φ(t, s, y(s)) is the fundamental matrix of (2.3). Then, by assump-
tions, we obtain

|y(t)| ≤ c|y0|h(t) h(t0)−1 + c

∫ t

t0

h(t) h(s)−1

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c|y0|+ c

∫ t

t0

r(s, |y(s)|)ds

since h(t) is nonincreasing. Thus we have

|y(t)| − c

∫ t

t0

r(s, |y(s)|)ds ≤ c|y0| = u0 = u(t)− c

∫ t

t0

r(s, u(s))ds.
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By Lemma 2.9, we get |y(t)| < u(t) for all t ≥ t0 ≥ 0. In view of
assumption, since u = 0 of (3.2) is hS,

|y(t)| < u(t) ≤ c1|u0|h(t) h(t0)−1

= c1c|y0|h(t) h(t0)−1 = M |y0|h(t)h(t0)−1, M = c1c > 1.

This completes the proof.

Remark 3.5. In the linear case, we can obtain that if the zero solu-
tion x = 0 of (2.5) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.3 except the condi-
tion of t∞-similarity.
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