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A CHARACTERIZATION OF CYCLE LENGTHS OF
CELLULAR AUTOMATA

Jae-Gyeom Kim*

Abstract. In this note, we give a characterization of cycle lengths
of uniform cellular automata configured with rules 60 or 102.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since
the concept of cellular automata first introduced by John Von Neumann
in the 1950’s. And cycle lengths of group cellular automata have been
studied [1-9].

In this note, we give a characterization of cycle lengths of uniform
cellular automata configured with rules 60 or 102.

2. Preliminaries

A cellular automaton (CA) is an array of sites (cells) where each
site is in any one of the permissible states. At each discrete time step
(clock cycle) the evolution of a site value depends on some rule (the
combinational logic) which is a function of the present states of its k
neighbors for a k-neighborhood CA. For 2-state 3-neighborhood CA,
the evolution of the (i)th cell can be represented as a function of the
present states of (i − 1)th, (i)th, and (i + 1)th cells as: xi(t + 1) =
f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational logic.
For such CA, the modulo-2 logic is always applied.

For 2-state 3-neighborhood CA there are 23 distinct neighborhood
configurations and 223

distinct mappings from all these neighborhood
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configurations to the next states, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from the neighborhood configurations to the next states as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.

The corresponding combinational logic of rule 60 is given by

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of (i)th cell depends on the present states of its
left and self neighbors.

And the CA, characterized by a rule known as rule 102, specifies an
evolution from the neighborhood configurations to the next states as:

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0 Decimal 102.

The corresponding combinational logic of rule 102 is given by

xi(t + 1) = xi(t)⊕ xi+1(t),

that is, the next state of (i)th cell depends on the present states of self
and its right neighbors.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), periodic (extreme cells are adjacent), etc. In the
sequel, we will always assume null boundary condition unless otherwise
specified. If the rule of a CA cell involves only XOR logic, then the rule
is called a linear rule. A CA with all the cells having linear rules is called
a linear CA. And the number of cells of a CA is called the length of a
CA.

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of a linear CA is given by ft+1(x) = T×ft(x),
where ft(x) is the current state and t is the time step. If all the states of
the CA form a single or multiple cycles, then it is referred to as a group
CA.

Lemma 2.1 ([3]). A CA is a group CA if and only if Tm = I where
T is the characteristic matrix of the CA, I is the identity matrix and m
is a positive integer.

Lemma 2.2 ([9]). CA rules 60, 102 and 204 form groups for all lengths
` with group order n = 2a where a = 0, 1, 2, · · · . And if the CA rule is

60 or 102 then
n

2
< ` ≤ n.
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3. Cycle lengths of cellular automata

For a uniform CA configured with rule 60, its characteristic matrix
T is as follows;

(T )ij =





1, i = j,

1, i = j + 1,

0, otherwise,

or

T =




1 0 0
1 1 0
0 1 1 0

·
·

·
0 1 1 0

0 1 1




Considering state transition and cycle lengths in the uniform CA of
length ` configured with rule 60, a state vector (0, · · · , 0, ct, · · · , c1) of
which first (`− t) entries are zero can be identified with the state vector
(ct, · · · , c1) in the uniform CA of length t configured with rule 60. When
ct is 1, it is called the first 1 of the state vector (0, · · · , 0, ct, · · · , c1), and
the proper length of the state vector is t.

So we have a lemma.

Lemma 3.1. Let (c`, · · · , c1) be a state vector in the uniform CA of
lengh ` configured with rule 60. If the proper length of the state vector
is t, then the cycle length of the state vector (c`, · · · , c1) is the same
as the cycle length of the state vector (ct, · · · , c1) in the uniform CA of
length t configured with rule 60.

Now we characterize the (2a)th power of the characteristic matrix T
of a CA configured with rule 60. By mathematical induction, we can
easily get T 2a

where a = 1, 2, · · · as follows;

(1) (T 2a
)ij =





1, i = j,

1, i = j + 2a,

0, otherwise,
or
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T 2a
(2)

=




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1 0 0
...

...
... · · · . . .

...
0 0 0 · · · 0 1 0 0
1 0 0 · · · 0 0 1 0 0
0 1 0 · · · 0 0 0 1 0 0
0 0 1 · · · 0 0 0 0 1 0 0
0 0 0 · · · 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · 0 1 0 0 · · · · · · · · · · · ·1




.← (2a)th row

Theorem 3.2. Let (c`, · · · , c1) be a state vector in the uniform CA
of length ` configured with rule 60. Suppose that ct is the first 1 of the
state vector, in other words, the proper length of the state vector is t
where 2a < t ≤ 2a+1. Then the cycle length of the state vector is 2a+1.

Proof. By Lemma 3.1, the cycle length of the state vector (c`, · · · , c1)
is the same as the cycle length of the state vector (ct, · · · , c1) in the
uniform CA of length t configured with rule 60. Now we have

(T 2a
)




ct
...

ct−2a+1

ct−2a

...
c1



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=




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1 0 0
...

...
... · · · . . .

...
0 0 0 · · · 0 1 0 0
1 0 0 · · · 0 0 1 0 0
0 1 0 · · · 0 0 0 1 0 0
0 0 1 · · · 0 0 0 0 1 0 0
0 0 0 · · · 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · 0 1 0 0 · · · · · · · · · · · ·1







ct
...

ct−2a+1

ct−2a

...
c1




by (1) and (2)

=




ct
...

ct−2a+1

ct−2a + ct
...
c1




6=




ct
...

ct−2a+1

ct−2a

...
c1




because ct = 1,

where T is the characteristic matrix of the uniform CA of length t con-
figured with rule 60. This means the cycle length of the state vector
(ct, · · · , c1) is greater than 2a. But the cycle length of the state vector
(ct, · · · , c1) is less than or equal to 2a+1 by Lemma 2.1 and 2.2. Thus
the cycle length of the state vector (ct, · · · , c1) is 2a+1 because it should
be a divisor of 2a+1. Hence we have the conclusion.

Corollary 3.3. For the uniform CA of length ` configured with
rule 60 where 2a < ` ≤ 2a+1, the number of state vectors of cycle length
2a+1 is (2`− 22a

)/2a+1, the number of state vectors of cycle length 2n is
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(22n − 22n−1
)/2n where 1 ≤ n ≤ 2a, and the number of state vectors of

cycle length 1 is 2.

Proof. It is a simple counting by Theorem 3.2.

Theorem 3.2 completely characterize the cycle lengths of state vectors
in uniform CA configured with rule 60. And Corollary 3.3 completely
characterize the numbers of such state vectors of cycle lenghts. Table 1
shows such numbers explicitly.

Table 1. Cycles of uniform CA configured with rules 60 or 102.
Length Generated cycles Length Generated cycles
of CA Length Number of CA Length Number

1 1 2 6 1 2
2 1 2 2 1

2 1 4 3
3 1 2 8 6

2 1 7 1 2
4 1 2 1

4 1 2 4 3
2 1 8 14
4 3 8 1 2

5 1 2 2 1
2 1 4 3
4 3 8 30
8 2

Since the characteristic matrices of uniform CA configured with rules
60 and 102 are the transposes of each other, the discussion on properties
related to CA rule 60 in this section is parallel to that on properties
related to CA rule 102. So all of the results on CA rule 60 that was
discussed in this section is still valid for CA rule 102. In particular,
we can have the following theorem and corollary which are parellel to
Theorem 3.2 and Corollary 3.3, respectively.

Theorem 3.4. Let (c1, · · · , c`) be a state vector in the uniform CA
of lengh ` configured with rule 102. Suppose that ct is the last 1 of the
state vector, in other words, the proper length of the state vector is t
where 2a < t ≤ 2a+1. Then the cycle length of the state vector is 2a+1.

Corollary 3.5. For the uniform CA of length ` configured with rule
102 where 2a < ` ≤ 2a+1, the number of state vectors of cycle length
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2a+1 is (2`− 22a
)/2a+1, the number of state vectors of cycle length 2n is

(22n − 22n−1
)/2n where 1 ≤ n ≤ 2a, and the number of state vectors of

cycle length 1 is 2.
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