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BIPROJECTIVITY OF C∗
r (G) AS A L1(G)-BIMODULE

Hun Hee Lee*

Abstract. We investigate biprojectivity of C∗r (G) as a L1(G)-
bimodule for a locally compact group G. The main results are
the following. As a L1(G)-bimodule C∗r (G) is biprojective if G is
compact and is not biprojective if G is an infinite discrete group or
G is a non-compact abelian group.

1. Introduction

Let G be a locally compact group. The space L1(G) is a Banach
algebra under the convolution product, and clearly it is commutative if
and only if G is commutative. Recall that the convolution ∗ is defined
by

f ∗ g(x) =
∫

G
f(y)g(y−1x)dy, f, g ∈ L1(G),

where dy denotes the left Haar measure on G. Moreover, the convolu-
tion algebra L1(G) contains every information about the group G itself,
which is why L1(G) is regarded as a central object in abstract harmonic
analysis.

Since the fundamental work of B. E. Johnson there have been many
investigations about relating (co-)homological properties of L1(G) with
the properties of G. For example, Johnson himself ([7]) proved that
L1(G) is amenable as a Banach algebra if and only if G is amenable,
and Helemskii ([5]) proved that L1(G) is a biprojective Banach algebra
if and only if G is compact. Recently, H. G. Dales and M. E. Polyakov
([2]) turned their attention to the modules over L1(G). They showed,
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among many others, that as a left-module of L1(G), C0(G), the algebra
of continuous function on G vanishing at infinity, is projective if and
only if G is compact.

In this paper we will continue the same line of research of Dales/
Polyakov with C∗

r (G), the reduced group C∗-algebra in the category
of L1(G)-bimodule. Recall that C∗

r (G) is the C∗-algebra generated by
{Lf : f ∈ L1(G)} ⊆ B(L2(G)), where Lf is the left convolution operator
with respect to f given by Lf (g) = f ∗ g, g ∈ L2(G). It is well-known
that the Fourier transform

F : L1(G) → C∗
r (G), f 7→ Lf

is an injective homomorphism with norm ≤ 1, and clearly the image
of F is norm-dense in C∗

r (G). Since C∗
r (G) appears more frequently in

the dual side of convolution algebra theory, namely, the Fourier algebra
theory of G, we might say that this paper deals with a mixture of two
theories.

Although we could not get the whole characterization of biprojectivity
of C∗

r (G), we were able to show the following positive and negative
results. When viewd as a L1(G)-bimodule, C∗

r (G) is biprojective if G is
compact and is not biprojective if G is an infinite discrete group or G is
a non-compact abelian group.

This paper is organized as follows. In section 2 we will present a
general theory of Banach algebras focusing on biprojectivity, and our
main results will be presented in the last section. We will assume that the
reader is familiar with standard functional analysis concepts including
projective and injective tensor products of Banach spaces.

2. A general theory related to biprojectivity

A standard reference for the homological treatment of Banach alge-
bras is [6].

Let A be a Banach algebra with the multiplication map m : A ⊗γ

A → A, where ⊗γ implies the projective tensor product of Banach
spaces. We say that a Banach space X is a A-bimodule if we have a
contractive multiplication map πX : A ⊗γ X ⊗γ A → X. We usually
denote by a · x · b for a, b ∈ A, x ∈ X instead of πX(a ⊗ x ⊗ b). Let
A+ = A⊕C be the unitization of A, then πX can be naturally extended
to π+

X : A+ ⊗γ X ⊗γ A+ → X.
When we have two A-bimodules X and Y , X⊗γ Y has a A-bimodule

structure given by a · (x⊗y) · b := (a ·x)⊗ (y · b) for any a, b ∈ A, x ∈ X,
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and y ∈ Y . If we have an additional Banach space Z, then the space
X ⊗γ Z ⊗γ Y has a A-bimodule structure given by a · (x⊗ z ⊗ y) · b :=
(a · x) ⊗ z ⊗ (y · b) for any a, b ∈ A, x ∈ X, y ∈ Y , and z ∈ Z. In this
case, a bounded linear map T : X → Y is called a A-bimodule map if
T (a · x · b) = a · T (x) · b for any a, b ∈ A, x ∈ X.

AA-bimodule X is called biprojective if there is a boundedA-bimodule
map ρ : A+ → A+ ⊗γ X ⊗γ A+ such that π+

X ◦ ρ = idA+ .
We will present a useful consequence of biprojectivity when we have

an object satisfying AP, the Grothendieck’s classical approximation prop-
erty. Recall that a Banach space X is said to have AP if the natural
map

X ⊗γ Y ↪→ X ⊗ε Y

is one-to-one for any Banach space Y , where ⊗ε implies the injective
tensor product of Banach spaces. Note that L1(G) has AP all the time.

Lemma 2.1. Let A be a Banach algebra, and let X be a A-bimodule.
Assume that X is biprojective and X or A have AP. Then for any non-
zero element x ∈ X, there is a bounded A-bimodule map T : X →
A+ ⊗γ A+ such that T (x) 6= 0.

Proof. The proof is essentially the same as [6, Corollary 4.5]. We
include a detailed argument for the reader’s convenience. Since X is
biprojective, we have a bounded A-bimodule map ρ : X → A+⊗γ X ⊗γ

A+ which is a right inverse of π+
X . Since π+

X ◦ ρ = idX for any non-zero
x, we have ρ(x) 6= 0. We can assume that A has AP since the proof for
the case X has AP is the same. It is clear that A+ also has AP. Then,
the following canonical map is injective.

A+ ⊗γ X ⊗γ A+ → A+ ⊗ε X ⊗ε A+ ↪→ (A∗+ ⊗γ X∗ ⊗γ A∗+)∗.

Thus, we can find g1, g2 ∈ A∗+ and f ∈ X∗ such that (g1⊗f⊗g2)(ρ(x)) 6=
0 and consequently (IA+ ⊗ f ⊗ IA+)(ρ(x)) 6= 0. If we set T = (IA+ ⊗
f ⊗ IA+)ρ, then T is the map we desired.

3. Main results

First of all, we need to understand the L1(G)-bimodule structure of
C∗

r (G). It is given by the following multiplication map.

π : L1(G)⊗γ C∗
r (G)⊗γ L1(G) → C∗

r (G), f ⊗ Lg ⊗ h 7→ Lf∗g∗h.

Since Lf∗g∗h = LfLgLh, it is clear that π is a contraction. We denote
the natural extension of π to the setting of unitization by π+ as before.
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We begin with a positive result.

Theorem 3.1. Let G is a compact group. Then C∗
r (G) is a biprojec-

tive L1(G)-bimodule.

Proof. Let

Γ : L1(G) → L1(G×G×G) ∼= L1(G)⊗γ L1(G)⊗γ L1(G)

given by Γ(f)(s, t, u) = f(stu), s, t, u ∈ G. Note that L1(G) is naturally
embedded in L1(G)+ by the map f 7→ (f, 0). Then, the map

ρ : C∗
r (G) → L1(G)+ ⊗γ C∗

r (G)⊗γ L1(G)+

given by ρ(Lf ) = (IL1(G)+⊗F⊗IL1(G)+)◦Γ(f) is a well defined isometry.
Indeed, since L1(G)⊗γ X ∼= L1(G; X) the vector valued L1-space for any
Banach space X, we have

‖ρ(Lf )‖L1(G)+⊗γC∗r (G)⊗γL1(G)+
=

∫

G

∫

G
‖F(s−1fu)‖C∗r (G) dsdu,

where s−1fu is the translation of f on both sides given by

s−1fu(t) = f(stu).

By the homomorphic property of Fourier transform we get

F(s−1fu) = λ(s−1)Lfλ(u−1),

where λ(x), x ∈ G is the left translation operator in B(L2(G)) given
by λ(x)f(y) = f(x−1y) for f ∈ L2(G) and x, y ∈ G. Note that λ(x) is
always a unitary map so that we have

‖F(s−1fu)‖C∗r (G) =
∥∥λ(s−1)Lfλ(u−1)

∥∥
C∗r (G)

= ‖Lf‖C∗r (G) .

Thus, we get

‖ρ(Lf )‖L1(G)+⊗γC∗r (G)⊗γL1(G)+
= ‖Lf‖C∗r (G) .

Since it is straightforward to check that ρ is a L1(G)-bimodule map and
it is a right inverse of π+, we got the map we wanted.

Remark 3.2. For a compact group G it is well-known that L1(G) is
biprojective as a L1(G)-bimodule ([5]). Then a general theory of Banach
algebras tells us that every essential left L1(G)-module is left projective,
which was the main tool Dales/Polyakov used in their work. Recall that
a left A-module X for a Banach algebra A is called essential if A · X
is dense in X. C∗

r (G) is clearly an essential module of L1(G), but the
above general theory only gives us the information of left projectivity.
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We also have negative results when the group is an infinite discrete
group or non-compact abelian group. The approach in [3, section 5] and
[4, section 3] will be used in a modified form. We usually denote L1(G)
by `1(G) in case of discret group G to emphasize discreteness.

Lemma 3.3. Let G be an infinite discrete group. Then, the space
of all bounded `1(G)-bimodule maps from C∗

r (G) into `1(G)⊗γ `1(G) is
trivial.

Proof. Let T : C∗
r (G) → `1(G) ⊗γ `1(G) ∼= `1(G × G) be a bounded

`1(G)-bimodule map. Then we will show that T (Lf ) = 0 for any f ∈
`1(G), so that T = 0 by continuity. Indeed, by the bimodule property of
T we have T (Lf ) = T (Lf∗δe) = T (f ·Lδe) = f · T (Lδe), where δx, x ∈ G
is the point mass function on x. Similarly we have T (Lf ) = T (Lδe) · f ,
so that we have f · F = F · f for any f ∈ `1(G), where F = T (Lδe) ∈
`1(G×G). If we put f = δx, x ∈ G, then we get

F (x−1s, t) = F (s, tx), ∀s, t ∈ G,

which is equivalent to

F (s, t) = F (xs, tx), ∀s, t ∈ G.

Then we have F (s, t) = 0 for any s, t ∈ G. Indeed, we have
∑

x∈G

|F (s, t)| =
∑

x∈G

|F (xs, tx)| ≤ ‖F‖1 < ∞,

which means F (s, t) = 0 since G is an infinite group.

Theorem 3.4. Let G be an infinite discrete group. Then, C∗
r (G) is

not a biprojective `1(G)-bimodule.

Proof. Suppose that C∗
r (G) is biprojective, then, by Lemma 2.1 and

the fact `1(G) has AP we have the following: for any non-zero ele-
ment x ∈ C∗

r (G) we can find a L1(G)-bimodule map T : C∗
r (G) →

`1(G)+ ⊗γ `1(G)+ such that T (x) 6= 0. If we convolve appropriate non-
zero functions in `1(G) to T (x) on the right for the first variable and on
the left for the second variable, we can actually find a `1(G)-bimodule
map T ′ : C∗

r (G) → `1(G) ⊗γ `1(G) such that T ′(x) 6= 0. However, this
is impossible by Lemma 3.3.

Theorem 3.5. Let G be a non-compact abelian group. Then, C∗
r (G)

is not a biprojective L1(G)-bimodule.



754 Hun Hee Lee

Proof. We will follow the approach in the proof of Theorem 3.4. Thus,
it is enough to show that the space of all bounded L1(G)-bimodule
maps from C∗

r (G) into L1(G) ⊗γ L1(G) is trivial. Let T : C∗
r (G) →

L1(G)⊗γ L1(G) ∼= L1(G×G) be a bounded L1(G)-bimodule map. Since
G is abelian, L1(G) is a commutative algebra, so that we have

f · T (Lg) = T (f · Lg) = T (Lf∗g) = T (Lg∗f ) = T (Lg · f) = T (Lg) · f
for any f, g ∈ L1(G). Let F = T (Lg) ∈ L1(G × G). By w∗-continuity
we can conclude that

δx · F = F · δx

for any x ∈ G, so that we have

F (s, t) = F (xs, tx), ∀s, t, x ∈ G.

Then since G is non-compact, for any nonempty compact subset K ⊂ G
there is a sequence (xn)n≥1 ⊂ G such that xnK’s are disjoint. Moreover,
we have

∑

n≥1

∫

K×K
|F (s, t)| dsdt =

∑

n≥1

∫

K×K
|F (xns, txn)| dsdt

=
∑

n≥1

∫

xnK×xnK
|F (s, t)| dsdt

≤ ‖F‖1 < ∞.

Thus, we have
∫
K×K |F (s, t)| dsdt = 0 for any nonempty compact subset

K ⊂ G, which implies that T (Lg) = F = 0 by inner regularity of the
Haar measure. Since g ∈ L1(G) is arbitrary we get T = 0 by continuity.

We end this paper with the following open question.

Problem 3.1. Is the biprojectivity of C∗
r (G) as a L1(G)-bimodule

equivalent to the compactness of G?
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