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CONVERGENCE FOR ARRAYS OF ROWWISE
NEGATIVELY QUADRANT DEPENDENT RANDOM

VARIABLES

Hyun-Chull Kim*

Abstract. In this paper we consider some results on convergence
for arrays of rowwise and pairwise negatively quadrant dependent
random variables.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variable defined on a fixed
probability space (Ω,F ,P) and Sn =

∑n
i=1 Xi for n ≥ 1. Lehmann(1966)

introduced a simple and natural definition of bivariate dependence: A
sequence {Xn, n ≥ 1} of random variables is said to be pairwise nega-
tively quadrant dependent if for any ri, rj and i 6= j,

(1.1) P (Xi > ri, Xj > rj) ≤ P (Xi > ri)P (Xj > rj).

Since the concept of complete convergence was introduced by Hsu and
Robbins(1947), there have been many authors who devote the study to
complete convergence for sums and weighted sums of random variables.
Li et al.(1995) proved the complete convergence for weighted sums of
independent and identically distributed random variables, Liang and
Su(1999) and Liang(2000) showed complete convergence for weighted
sums of negatively associated random variables and Kuczmaszewska
(2009) studied complete convergence for arrays of rowwise negatively
associated random variables. There are few literature on complete con-
vergence for pairwise negatively quadrant random variables. In this
paper we study the complete convergence for arrays of rowwise and
pairwise negatively quadrant dependent random variables.
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We close this section with introducing a few lemmas needed in the
future part of this paper.

Lemma 1.1. Let {Xn, n ≥ 1} be a sequence of pairwise negatively
quadrant dependent random variables and {fn, n ≥ 1} be a sequence
of nondecreasing functions. Then {fn(Xn), n ≥ 1} is still a sequence of
negatively quadrant dependent random variables.

Lemma 1.2 (Wu( 2006)). Let {Xn, n ≥ 1} be a sequence of pairwise
negatively quadrant dependent random variables with mean zero and
finite second moment. Then

(1.2) E( max
1≤k≤n

|
k∑

j=1

Xj |)2 ≤ (log2 n)2
n∑

j=1

EX2
j .

In this paper we give some results concerning complete convergence
of weighted sums

bn∑

i=1

aniXni,

where {ani, i ≥ 1, n ≥ 1} is an array of constants(weighted), {Xni, i ≥
1, n ≥ 1} is an array of rowwise and pairwise negatively quadrant de-
pendent random variables and {bn, n ≥ 1} is an increasing sequence of
positive integers.

Definition 1.3. A real valued function h(x), positive and measur-
able on [a,∞) for some a > 0, is said to be slowly varying if

lim
x→0

h(λx)
h(x)

= 1 for each λ > 0.

Lemma 1.4 (Zhidong and Chan(1985)). If h(x) > 0 is slowly varying
function as x →∞, then

(a) limx→0
h(x+u)

h(x) = 1 for each u > 0,

(b) limk→∞ sup2k≤x<2k+1
h(x)
h(2k)

= 1,

(c) c12krh(ε2k) ≤ ∑k
j=1 2jrh(ε2j) ≤ c22krh(ε2k) for every r > 0, ε >

0, positive integer k and some positive constants c1 and c2,

(d) c32krh(ε2k) ≤ ∑∞
j=k 2jrh(ε2j) ≤ c42krh(ε2k) for every r < 0, ε >

0, positive integer k and some positive constants c3 and c4.)
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2. Results

Theorem 2.1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
pairwise negatively quadrant dependent random variables with mean
zero and {ani, i ≥ 1, n ≥ 1} be an array of positive numbers. Let {bn, n ≥
1} be a non decreasing sequence of positive integers and {cn, n ≥ 1} be
a sequence of positive numbers. Assume that for some 0 < t < 2 and
any ε > 0

(2.1)
∞∑

n=1

cn(log2 bn)2
bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n} < ∞

and

(2.2)
∞∑

n=1

cnb
− 2

t
n (log2 bn)2

bn∑

j=1

a2
njE(Xnj)2I[|anjXnj | < εb

1
t
n ] < ∞.

Then

(2.3)
∞∑

n=1

cn×

P{ max
1≤k≤bn

|
k∑

j=1

(anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ])| > εb

1
t
n} < ∞.

Proof. If the
∑∞

n=1 cn is convergent, then (2.3) holds. Hence we will
consider only the case when

∑∞
n=1 cn is divergent. Let

X̃nj = XnjI[|anjXnj | < εb
1
t
n ]

+
εb

1
t
n

anj
I[anjXnj ≥ εb

1
t
n ]− εb

1
t
n

anj
I[anjXnj ≤ −εb

1
t
n ],

Yni = X̃ni −EX̃ni and Tnk =
k∑

i=1

aniYni.

Since anjEXnjI[|anjXnj | ≥ εb
1
t
n ] = −anjEXnjI[|anjXnj | < εb

1
t
n ] it fol-

lows from (2.1) that, for sufficient large n we have

(2.4) P{ max
1≤k≤bn

|
k∑

j=1

(anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ])| > εb

1
t
n}
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≤
bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n}+ ε−2b

− 2
t

n E( max
1≤k≤bn

|Tnk|)2.

We estimate

(2.5) EY 2
nj ≤ EX2

njI[|anjXnj | < εb
1
t
n ] +

ε2b
2
t
n

a2
nj

P{|anjXnj | ≥ εb
1
t
n}.

Thus by (2.4), (2.5) and Lemma 1.2 we get

(2.6) P{ max
1≤k≤bn

|
k∑

j=1

anjXnj − anjEXnjI[|anjXnj | < εb
1
t
n ]| > εb

1
t
n}

≤
bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n}

+b
− 2

t
n (log2 bn)2{

bn∑

j=1

a2
njEX2

njI[|anjXnj | < εb
1
t
n ]}

+(log2 bn)2
bn∑

j=1

P{|anjXnj | > εb
1
t
n}.

It follows from (2.1) that

(2.7)
∞∑

n=1

cn

bn∑

j=1

P{|anjXnj | ≥ εb
1
t
n} < ∞.

Hence by (2.1), (2.2), (2.6) and (2.7) we obtain (2.3).

Corollary 2.2. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
pairwise negatively quadrant dependent random variables with EXni =
0 for all i ≥ 1, n ≥ 1 and EX2

ni < ∞ 1 ≤ i ≤ bn, n ≥ 1, where
{bn, n ≥ 1} is a nondecreasing sequence of positive integers and let
{ani, i ≥ 1, n ≥ 1} be an array of positive numbers. If, for some {cn, n ≥
1} of positive numbers and 0 < t < 2

(2.8)
∞∑

n=1

cnb
− 2

t
n (log2 bn)2

bn∑

j=1

a2
njEX2

nj < ∞,

then for any ε > 0,

(2.9)
∞∑

n=1

cnP{ max
1≤k≤bn

|
k∑

j=1

anjXnj | > εb
1
t
n} < ∞.
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Corollary 2.3. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
pairwise negatively quadrant dependent random variables with mean
zeros and finite variances. Let {ani, i ≥ 1, n ≥ 1} be an array of positive
numbers satisfying

(2.10)
n∑

j=1

a2
njEX2

nj(log2 n)2 = O(nδ) as n →∞

for some 0 < δ < 1. Then, for any ε > 0 and α ≥ 1
2

(2.11)
∞∑

n=1

n2(α−1)P{ max
1≤k≤n

|
k∑

j=1

anjXnj | > εnα} < ∞.

Proof. By Chebyshev’s inequality and (2.10) we have
∞∑

n=1

n2(α−1)P{ max
1≤k≤n

|
k∑

j=1

anjXnj | > εnα}

< ε−2
∞∑

n=1

n2(α−1)(log2 n)2
n∑

j=1

a2
njE|Xnj |2

n2α

< C
∞∑

n=1

n−2+δ < ∞.

Corollary 2.4. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
pairwise negatively quadrant dependent random variables with mean
zeros. Assume that there exists a constant D such that, for all x ≥
0, i ≥ 1 and n ≥ 1

(2.12) P{|Xni| > x} ≥ DP{D|X| > x}
by a random variable X and {ani, i ≥ 1, n ≥ 1} is a array of constants
such that

(2.13) lim
n→∞ ani = 0 for each i ≥ 1

and

(2.14)
n∑

i=1

|ani| ≤ C for all n ≥ 1, and a positive constant C.

If for some 0 < t < 2, δ > 1
t

(2.15) sup
i≥1

|ani| = O(n
1
t
−δ) and E|X|1+ 1

δ < ∞,
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then for any ε > 0

∞∑

n=1

P{ max
1≤k≤n

|
k∑

j=1

anjXnj | > εn
1
t } < ∞.

Proof. Let cn = 1, bn = n for n ≥ 1 in Theorem 2.1. Then, by (2.12),
(2.13) and (2.15) we have

∞∑

n=1

n∑

j=1

P{|anjXnj | ≥ εn
1
t }

≤
∞∑

n=1

n∑

j=1

P{|anjX| > εn
1
t

D
}

≤
∞∑

n=1

n∑

j=1

P{|X| ≥ Cεn
1
t }

≤
∞∑

n=1

nP{Cεnδ ≤ |X| < C(n + 1)δ}

≤ CE|X| 1δ < ∞

and

≤ C
∞∑

n=1

n−
2
t

n∑

i=1

a2
ni(EX2I[|aniX| < εn

1
t ]

+
n

2
t

a2
ni

P{|aniX| ≥ εn
1
t })

≤ C

∞∑

n=1

n−
1+1

δ
t

n∑

i=1

|ani|1+ 1
δ E|X|1+ 1

δ

+C

∞∑

n=1

n∑

i=1

P{|aniX| ≥ εn
1
t }

≤ C
∞∑

n=1

n−
1
t
−1E|X|1+ 1

δ

n∑

i=1

|ani|+ CE|X| 1δ

≤ C
∞∑

n=1

n−
1
t
−1 + CE|X| 1δ < ∞.
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For each 1 ≤ i ≤ n we have

n−
1
t

n∑

j=1

anjEXnjI[|anjXnj | < εn
1
t ]

≤ C(n−
1
t

n∑

j=1

|anj |E|X|+
n∑

j=1

P{|anjX| ≥ εn
1
t })

≤ Cn−
1
t → 0 as n →∞.

Hence the proof is complete by Theorem 2.1.

Corollary 2.5. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
pairwise negative quadrant dependent random variables and {ani, i ≥
1, n ≥ 1} be an array of real numbers. Let h(x) > 0 be a slowly varying
function as x → ∞, α > 1

2 and αr ≥ 1. If for 0 < t < 2 the following
conditions hold for any ε > 0

(2.16)
∞∑

n=1

nαr−2(log n)2h(n)
n∑

j=1

P{|anjXnj | ≥ εn
1
t } < ∞,

(2.17)
∞∑

n=1

nαr−2− 2
t (log2 n)2h(n)

n∑

j=1

a2
njEX2

njI[|anjXnj | < εn
1
t ],

then

(2.18)
∞∑

n=1

nαr−2h(n)

×P{ max
1≤k≤n

|
k∑

j=1

anjXnj − anjEXnjI[|anjXnj | < εn
1
t ]| > εn

1
t }.

Proof. Let cn = nαr−2h(n) and bn = n. Then by Theorem 2.1 (2.18)
follows.

Corollary 2.6. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise and
identically distributed pairwise negative quadrant dependent random
variables with EX11 = 0 and let h(x) > 0 be a slowly varying function
as x →∞. If for α > 1

2 , αr ≥ 1 and 0 < t < 2, E|X11|αrth(|X11|t) < ∞,
then

(2.19)
∞∑

n=1

nαr−2h(n)P{ max
1≤k≤n

|
k∑

j=1

Xnj | ≥ εn
1
t } < ∞.
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Proof. It is enough to show that under the assumptions of Corollary
2.6, for ani = 1, i ≥ 1, n ≥ 1, the conditions (2.16) and (2.17) of Corollary
2.5 hold. Indeed, we see that using Lemma 1.4 we obtain

∞∑

n=1

nαr−1h(n)P{|X11| ≥ εn
1
t }

≤ C
∞∑

k=1

(2k)αrh(2k)P{|X11| ≥ ε(2k)
1
t }

≤ C

∞∑

m=1

P{ε(2m)
1
t ≤ |X11| < ε(2m+1)

1
t }

m∑

j=1

(2j)αrh(2j)

≤ C

∞∑

m=1

(2m)αrh(2m)P{ε(2m)
1
t ≤ |X11| < ε(2m+1)

1
t }

≤ CE|X11|αrtl(|X11|t) < ∞,

from which (2.16) is satisfied.
To prove that (2.17) is fulfilled, we first note that

∞∑

n=1

nαr−1− 2
t h(n)E|X11|2I[|X11| < εn

1
t ]

≤ C

∞∑

k=1

(2k)αr− 2
t h(2k)

∫ (2k)
1
t

0
x2dF (x)

≤ C
∞∑

k=1

(2k)αr− 2
t h(2k)

k∑

i=1

∫ (2i)
1
t

(2i−1)
1
t

x2dF (x)

≤ C

∞∑

m=1

(2m)αr− 2
t h(2m)

∫ (2m)
1
t

(2m−1)
1
t

x2dF (x)

= C
∞∑

m=1

(2m)αr− 2
t

∫ (2m)
1
t

(2m−1)
1
t

h(2× 2m−1)
h(|x|t) h(|x|t)x2dF (x)

= I.

But by Lemma 1.2, we see that for sufficiently large m

I ≤ C
∞∑

m=1

(2m)αr− 2
t

∫ (2m)
1
t

(2m−1)
1
t

h(|x|t)x2dF (x).



Convergence for arrays of NQD rvs 729

Then,

∞∑

m=1

(2m)αr− 2
t

∫ (2m)
1
t

(2m−1)
1
t

h(|x|t)x2dF (x)

≤
∞∑

m=1

∫ (2m)
1
t

(2m−1)
1
t

(|x|t)αrh(|x|t)x2dF (x)

= E|X11|αrth(|X11|t) < ∞.

Hence, (2.7) is satisfied. The proof will be completed if we show that
for each 1 ≤ i ≤ n

n−
1
t i|EX11I[|X11| < εn

1
t ]| → 0 as n →∞.

If αrt < 1, then

n−
1
t i|EX11I[|X11| < εn

1
t ] ≤ (ε)1−αrtn1−αrE|X11|αrt → 0 as n →∞

and in the case αrt ≥ 1, because EX11 = 0

n−
1
t i|EX11I[|X11| < εn

1
t ] ≤ n1− 1

t | − EX11I[|X11| ≥ εn
1
t ]|

≤ (ε)1−αrtn1−αrE|X11|αrt → 0 as n →∞.
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