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A p-TH ROOT OF A MINKOWSKI UNIT
JANGHEON Op*

ABSTRACT. The purpose of this paper is to show that there exists
a unit whose p-th root generates the first layer of anti-cyclotomic
Zp-extension of certain imaginary quadratic nunber fields.

1. Introduction

Let & be an imaginary quadratic field, and L an abelian extension
of k. L is called an anti-cyclotomic extension of & if it is Galois over
Q. and Gal(k/Q) acts on Gal{L/k) by —1. For each prime number p,
the compositum K of all Zy-extensions over & becomes a Z},Q-ext.ension,
and A is the compositum of the eyclotomic Zj,-extension and the anti-
cyclotomic Zj-extension of k. In the paper[4], using Kummer theory
and ¢lass field theory, we constructed for odd primes the first layer A of
the anti-cyclotomic Zy-extension of an imaginary quadratic field whose
class number is not divisible by p under the assumption that a unit =
constructed in the paper [4](see Theorem 1 of this paper) is not a p-
power of a unit. In this paper, we will show that there always exists
such a unit z that is not a p-power of a unit.

2. Main Theorem

We begin this section by explaining how to construct a cyclic exten-
sion A, of prime degree p of an imaginary quadratic field %, which is
unramified outside p over £ and Gal{dM,/Q) = D,. the dihedral group of
order 2p. From now on, we let & = Q(v/—d) be an imaginary quadratic
field with £ N Q(¢,} = Q and let o, 7 with ¢((,) = (" be generators of
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Gal(k,/k), Gal(k./Q(¢)), respectively, where ¢, a primitive p-th root
of unity and &, = k{¢y). Then we have the following theorem which is
the main theorem refinement of [4, Theorem 1].

THEOREM 2.1. (See [6, Theorem 1|) Let X be a vector space over
a finite field F, with a basis {@y.--- 2,1} and A be a linear map
such that Ar; = xyqy fori =1.---.p—2and Aryoy = 1. Let v =
>, wi@; be an eigenvector of A corresponding to an eigenvaluet satisfving
o((p) = . Let k = Q(V—=d) be an imaginary quadratic field such
that k N Q((y) = Q. Assume that ¢ = 7(e)e”! is not a p-power of a
unit in k., where ¢ = l-[i(a-')‘“‘"l_L for some unit o € k,. Then k,( ¢/z)
contains a unique cvclic extension M, of prime degree p of k. which
is unramified outside p over k and Gal(M,/Q) = D, and A, = k(n)
where n = Try., (o, (U2}

Before proving our main theorem, we need a lemma.

LEMMA 2.2, (See 7. Lemma 5.27]) Let K/Q be a real finite Galois
extension then let o1, .o,41 be the elements of Gul(K/Q). There
exists a unit o of K such that the set of units {a%|l < i < r} i3
multiplicatively independent, hence generates a subgroup of finite index
in the full group of units Ey (such a unit is called a Minkowski unit).

REMARK 2.1. By above lemma, we see that Fr 0 Q =~ Q|Gal(K/Q)]
o1+ +0,41). therefore Ex /Ex? = F,|Gal(K/Q)/(e1+ -+ r41)
when p [/|K : Q).

Note that the characteristic polynomial of the map A in Theorem 1
is 2771 — 1. Therefore the eigenvector for any nonzero ¢ in F, always
exists. Now we will prove our main theorem that = in Theorem 1 is not
a p-power of a unit in £,. Actually, it is enough to show that the unit
z is not a p-power of a unit in A/ which is the maximal real subfiekl
of &, because of the well-known fact that [Ey, : WAM™1] = 1 or 2. Here
7 is the group of roots of unity in £,. Let notatioms be the same as in
Theorem 1. By abuse of notation, let o, 7 denote by the extensions of
0.7 to k; with oy, g =ldentity and 7lg,;=identity.

THEOREM 2.3. Let p > 3 be a prime. Then the unit ¢ in Theorem 1
is not a p-power of a unit in k, if ¢v is a Minkowski unit in M.

Proof. First we prove the theorem in the case of p = 1 modulo 4. The
unigue quadratic subfield of Q(¢,) is Q(,/p). It follows that the maximal
real subfield M7 of k. is

QG+ &L V=G — ¢ 7))
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Let @ = 5 . a;x; be an eigenvector of A corresponding to an eigenvalue

=1
t satisfying ¢((,) = " and t*77 = —1 modulo p. Note that
p=l c -1 B By
g 2 (Qp —{p ) = O — Gp =¢  —Gp

o (V=d) = (vV=d)
T((p - Cp_l) = (<p - Cp_l)- T( V _d) = _( V _d)'
S0 O'PZTI((V _d)(cp - Q.p_l)) = —(v _d)(ﬁp _jl.Cp_l) and 7({v _d')((:p -
G N = =(V=d)(¢, = ¢ ). Therefore 7, & H = Gal(k, /M),
which implies that o|y;+ is a generator of Gal(M™/Q) and 7|3~ =

(7laz-) = . Now we choose v as a Minkowski unit in A/, Then we have

- azatThyr—1)
£ = (1—[ a®™? )}
7

X —1
-1 el ey =) =)
[

; SRR =L S,
= (H(:t"‘“"'.nﬁ)l el
H

= ¢T3,

where v is a unit in M. This completes the proof by the Remark 1
above. Next we will prove the theorem in the case of p = 3 modulo
4. Then the maximal real subfield Aftof &, is Q(¢ + &~ Vdp) since
Q{/—p) 1s the unique ¢uadratic subfield of Q(¢p). It is clear that

O-PjTL(\/IP) = —-\/Ip._ JP:TI(CP + (p_l) = (_:p + L_:p_l
T(\/d_p) == \/d_lJ T(Cp + Q‘p_l) = (:p + Cp_1~

Therefore the order of oly- is p — 1 and r_7|;u+pTl = 7|p-. Now we
easily check as in the case of p = 1 modulo 4 that £ = ¢ %0, where u is
a unit in AT, which implies that z is not a p-power of a unit in &, by
Remark 1. O

THEOREM 2.4. Let p be an odd prime which is greater than 3, d a
square free positive integer and k = Q(v/—d) an imaginary quadratic
field such that p |/hy. Then

ki = k(n)

where n is as in Theorem 1.
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Proof. Let F be the maximal abelian p-extension of & unramified
outside p. Then class field theory (see [7, Corollary 13.6]) shows that

Gal(F/k) = ([ [ Ura)s
plp
where [7] p is the local units of £ which s congruent to 1 modp. Hence F.
which is equal to the compositum K of all Zy-extension of & in this case,
contains a unique Dp-extension A of Q (cf.[4. Lemma2|). Therefore
M, =k = k(n) since M, and £{ are Dj-extensions of Q contained in
F. O

REMARK 2.2. For p = 2.3, the explicit construction of the first layer
of the anti-cyclotomic Zy-extension of £ is given in [2. 3]. For Kummer
extension of a number field which does not contain roots of unity, see [1].
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