A p-TH ROOT OF A MINKOWSKI UNIT

JANGHEON OH*

ABSTRACT. The purpose of this paper is to show that there exists a unit whose p-th root generates the first layer of anti-cyclotomic \mathbb{Z}_p -extension of certain imaginary quadratic number fields.

1. Introduction

Let k be an imaginary quadratic field, and L an abelian extension of k. L is called an anti-cyclotomic extension of k if it is Galois over \mathbb{Q} , and $Gal(k/\mathbb{Q})$ acts on Gal(L/k) by -1. For each prime number p, the compositum K of all \mathbb{Z}_p -extensions over k becomes a \mathbb{Z}_p^2 -extension, and K is the compositum of the cyclotomic \mathbb{Z}_p -extension and the anti-cyclotomic \mathbb{Z}_p -extension of k. In the paper[4], using Kummer theory and class field theory, we constructed for odd primes the first layer k_1^a of the anti-cyclotomic \mathbb{Z}_p -extension of an imaginary quadratic field whose class number is not divisible by p under the assumption that a unit ε constructed in the paper [4](see Theorem 1 of this paper) is not a p-power of a unit. In this paper, we will show that there always exists such a unit ε that is not a p-power of a unit.

2. Main Theorem

We begin this section by explaining how to construct a cyclic extension M_p of prime degree p of an imaginary quadratic field k, which is unramified outside p over k and $Gal(M_p/\mathbb{Q}) \simeq D_p$, the dihedral group of order 2p. From now on, we let $k = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field with $k \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$ and let σ, τ with $\sigma(\zeta_p) = \zeta_p^t$ be generators of

Received May 10, 2010: Accepted August 12, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R23.

Key words and phrases: anti-cyclotomic extension, Minkowski unit, Kummer extension.

^{*}This work was supported by the faculty research fund of Sejong University in 2009.

 $Gal(k_z/k), Gal(k_z/\mathbb{Q}(\zeta_p))$, respectively, where ζ_p a primitive p-th root of unity and $k_z = k(\zeta_p)$. Then we have the following theorem which is the main theorem refinement of [4, Theorem 1].

Theorem 2.1. (See [6, Theorem 1]) Let X be a vector space over a finite field F_p with a basis $\{x_1, \cdots, x_{p-1}\}$ and A be a linear map such that $Ax_i = x_{i+1}$ for $i = 1, \cdots, p-2$ and $Ax_{p-1} = x_1$. Let $x = \sum_i a_i x_i$ be an eigenvector of A corresponding to an eigenvalue t satisfying $\sigma(\zeta_p) = \zeta_p^t$. Let $k = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field such that $k \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$. Assume that $\varepsilon = \tau(\epsilon)\epsilon^{-1}$ is not a p-power of a unit in k_z , where $\epsilon = \prod_i (\alpha)^{a_i \sigma^{i-1}}$ for some unit $\alpha \in k_z$. Then $k_z(\sqrt[q]{\varepsilon})$ contains a unique cyclic extension M_p of prime degree p of k, which is unramified outside p over k and $Gal(M_p/\mathbb{Q}) \simeq D_p$, and $M_p = k(\eta)$ where $\eta = Tr_{k_z(\sqrt[q]{\varepsilon})/M_p}(\sqrt[q]{\varepsilon})$.

Before proving our main theorem, we need a lemma.

LEMMA 2.2. (See [7, Lemma 5.27]) Let K/\mathbb{Q} be a real finite Galois extension then let $\sigma_1, \dots, \sigma_{r+1}$ be the elements of $Gal(K/\mathbb{Q})$. There exists a unit α of K such that the set of units $\{\alpha^{\sigma_i}|1 \leq i \leq r\}$ is multiplicatively independent, hence generates a subgroup of finite index in the full group of units E_K (such a unit is called a Minkowski unit).

REMARK 2.1. By above lemma, we see that $E_K \oplus \mathbb{Q} \simeq \mathbb{Q}[Gal(K/\mathbb{Q})]$ / $(\sigma_1 + \cdots + \sigma_{r+1})$, therefore $E_K/E_K{}^p \simeq \mathbb{F}_p[Gal(K/\mathbb{Q})]/(\sigma_1 + \cdots + \sigma_{r+1})$ when $p \mid K : \mathbb{Q}$.

Note that the characteristic polynomial of the map A in Theorem 1 is $x^{p-1}-1$. Therefore the eigenvector for any nonzero t in F_p always exists. Now we will prove our main theorem that ε in Theorem 1 is not a p-power of a unit in k_z . Actually, it is enough to show that the unit ε is not a p-power of a unit in M^+ which is the maximal real subfield of k_z because of the well-known fact that $[E_{k_z}:WM^+]=1$ or 2. Here W is the group of roots of unity in k_z . Let notations be the same as in Theorem 1. By abuse of notation, let σ, τ denote by the extensions of σ, τ to k_z with $\sigma|_{\mathbb{Q}(\sqrt{-d})}$ =identity and $\tau|_{\mathbb{Q}(\zeta_p)}$ =identity.

THEOREM 2.3. Let p > 3 be a prime. Then the unit ε in Theorem 1 is not a p-power of a unit in k_z if α is a Minkowski unit in M^+ .

Proof. First we prove the theorem in the case of $p \equiv 1$ modulo 4. The unique quadratic subfield of $\mathbb{Q}(\zeta_p)$ is $\mathbb{Q}(\sqrt{p})$. It follows that the maximal real subfield M^+ of k_z is

$$\mathbb{Q}(\zeta_p + \zeta_p^{-1}, \sqrt{-d}(\zeta_p - \zeta_p^{-1})).$$

Let $x = \sum_i a_i x_i$ be an eigenvector of A corresponding to an eigenvalue t satisfying $\sigma(\zeta_p) = \zeta_p^{-t}$ and $t^{\frac{p-1}{2}} \equiv -1$ modulo p. Note that

$$\sigma^{\frac{p-1}{2}}(\zeta_p - \zeta_p^{-1}) = \zeta_p^{-\frac{p-1}{2}} - \zeta_p^{-\frac{p-1}{2}} = \zeta_p^{-1} - \zeta_p$$
$$\sigma^{\frac{p-1}{2}}(\sqrt{-d}) = (\sqrt{-d})$$
$$\tau(\zeta_p - \zeta_p^{-1}) = (\zeta_p - \zeta_p^{-1}), \tau(\sqrt{-d}) = -(\sqrt{-d}).$$

So $\sigma^{\frac{p-1}{2}}((\sqrt{-d})(\zeta_p - \zeta_p^{-1})) = -(\sqrt{-d})(\zeta_p - \zeta_p^{-1})$ and $\tau((\sqrt{-d})(\zeta_p - \zeta_p^{-1})) = -(\sqrt{-d})(\zeta_p - \zeta_p^{-1})$. Therefore $\sigma^{\frac{p-1}{2}}, \tau \not\in H = Gal(k_z/M^+)$, which implies that $\sigma|_{M^+}$ is a generator of $Gal(M^+/\mathbb{Q})$ and $\tau|_{M^-} = (\sigma|_{M^-})^{\frac{p-1}{2}}$. Now we choose α as a Minkowski unit in M^+ . Then we have

$$\begin{split} \varepsilon &= (\prod_{i} \alpha^{a_{i}\sigma^{i-1}})^{(\tau-1)} \\ &= (\prod_{i} \alpha^{a_{i}(\sigma|_{M^{+}})^{i-1}})^{((\sigma|_{M^{-}})^{\frac{p-1}{2}}-1)} \\ &= (\prod_{i} \alpha^{a_{i}(\sigma|_{M^{+}})^{i-1}})^{(t^{\frac{p-1}{2}}-1)} \\ &= \epsilon^{-2} u^{p}. \end{split}$$

where u is a unit in M^+ . This completes the proof by the Remark 1 above. Next we will prove the theorem in the case of $p \equiv 3$ modulo 4. Then the maximal real subfield M^+ of k_z is $\mathbb{Q}(\zeta_p + \zeta_p^{-1}, \sqrt{dp})$ since $\mathbb{Q}(\sqrt{-p})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$. It is clear that

$$\sigma^{\frac{p-1}{2}}(\sqrt{dp}) = -\sqrt{dp}, \sigma^{\frac{p-1}{2}}(\zeta_p + \zeta_p^{-1}) = \zeta_p + \zeta_p^{-1}$$
$$\tau(\sqrt{dp}) = -\sqrt{dp}, \tau(\zeta_p + \zeta_p^{-1}) = \zeta_p + \zeta_p^{-1}.$$

Therefore the order of $\sigma|_{M^+}$ is p-1 and $\sigma|_{M^+}^{\frac{p-1}{2}}=\tau|_{M^+}$. Now we easily check as in the case of $p\equiv 1$ modulo 4 that $\varepsilon=\epsilon^{-2}u^p$, where u is a unit in M^+ , which implies that ε is not a p-power of a unit in k_z by Remark 1.

THEOREM 2.4. Let p be an odd prime which is greater than 3, d a square free positive integer and $k = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field such that $p \mid /h_k$. Then

$$k_1^a = k(\eta)$$

where η is as in Theorem 1.

Proof. Let F be the maximal abelian p-extension of k unramified outside p. Then class field theory (see [7, Corollary 13.6]) shows that

$$Gal(F/k) \simeq (\prod_{\mathfrak{p}\mid p} U_{1,\mathfrak{p}}),$$

where $U_{1,\mathbf{p}}$ is the local units of k which is congruent to 1 $mod\mathfrak{p}$. Hence F, which is equal to the compositum K of all \mathbb{Z}_p -extension of k in this case, contains a unique D_p -extension k_1^a of \mathbb{Q} (cf.[4, Lemma2]). Therefore $M_p = k_1^a = k(\eta)$ since M_p and k_1^a are D_p -extensions of \mathbb{Q} contained in F

REMARK 2.2. For p = 2, 3, the explicit construction of the first layer of the anti-cyclotomic \mathbb{Z}_p -extension of k is given in [2, 3]. For Kummer extension of a number field which does not contain roots of unity, see [1].

References

- [1] H. Cohen, Advanced Topics in Computational Number Theory, Springer, 1999
- [2] J. M. Kim and J. Oh. Defining Polynomial of the first layer of anti-cyclotomic ∑₃-extension over imaginary quadratic fields of class number 1, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 3, 18-19.
- [3] J. Oh, The first layer of Z₂²-extension over imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 9, 132-134.
- [4] J. Oh, On the first layer of anti-cyclotomic \mathbb{Z}_p -extension over imaginary quadratic fields. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 19-20.
- J. Oh. A note on the first layers of Z_p-extensions, Commun. Korean Math. Soc. 24 (2009), no.3, 1-4.
- [6] J. Oh, Construction of 3-Hilbert class field of certain imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 1, 18-19.
- [7] L. Washington, Introduction to Cyclotomic Fields, Graduate Text in Math. 83 (1982), Springer-Verlag

×

Department of Applied Mathematics Sejong University Seoul 143-747, Republic of Korea E-mail: oh@sejong.ac.kr