Study of Pyrolysis Behavior of Alberta Oil Sand by Continuous Operation of Fluidized-Bed Reactor

Alberta 오일샌드의 유동층 열분해 연속실험을 통한 열분해 특성 파악

  • Shin, Jong-Seon (Department of Chemical Engineering, Hanyang University) ;
  • Sun, Yang Kuk (Department of Chemical Engineering, Hanyang University) ;
  • Park, Young Cheol (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Bae, Dal-Hee (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jo, Sung-Ho (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Shun, Dowon (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 신종선 (한양대학교 화학공학과) ;
  • 선양국 (한양대학교 화학공학과) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 배달희 (한국에너지기술연구원 온실가스연구단) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 선도원 (한국에너지기술연구원 온실가스연구단)
  • Received : 2009.10.05
  • Accepted : 2009.11.01
  • Published : 2010.02.28

Abstract

In this study, fluidized-bed pyrolysis has been conducted in order to recover the bitumen contained in the oil sand. Canada Alberta oil sand contains 11.9% of bitumen and the bitumen-derived heavy oil produced in fluidizedbed tends to be upgraded relative to the bitumen. The continuous operation has been performed using $N_2$ as a fluidization gas at 1 atm and $500^{\circ}C$ in a reactor of 170 cm height. The results showed 87.76% of bitumen conversion, where liquid products are 74.45% and gas products are 13.31%. $H_2$, $O_2$, CO, $CO_2$, $CH_4$, and NO and $C_1{\sim}C_4$ hydrocarbons in the gas products were analyzed by on-line gas analyzer and gas chromatography, respectively. The pyrolysis oil was analyzed by using proximate analysis, heavy metal analysis, SIMDIS, asphaltenes, and heating value. By SIMDIS analysis, naphtha was 11.50%, middle distillation was 44.83% and heavy oil was 43.66%. It was obvious that the pyrolysis oil was upgraded compared with bitumens.

본 실험은 오일샌드에 함유된 역청을 회수함에 있어 유동층 열분해 실험을 통한 역청 회수의 적합성을 확인하기 위하여 수행하였다. 본 실험에 사용된 캐나다 Alberta 오일샌드는 역청을 11.9%를 함유하고 있으며 열분해 공정을 통하여 회수한 열분해 오일은 오일샌드에 함유되어 있는 역청에 비하여 경질화되는 특성을 갖는다. 본 실험을 위하여 높이 170 cm의 반응기를 설치하였으며 1 atm, $500^{\circ}C$의 반응 조건 하에서 연속 운전 실험을 실시하였고 유동화 가스는 $N_2$를 사용하여 $1.62U_{mf}$ 조건에서 오일샌드의 열분해 반응특성을 연구하였다. 오일샌드 유동층 열분해 실험 결과 역청의 전환율은 87.76%이며 액체 생성물은 74.45%, 가스 생성물은 13.31%의 결과를 얻었다. 오일샌드 유동층 열분해 실험 중 발생하는 열분해 가스는 실시간 가스분석기를 사용하여 $H_2$, $O_2$, CO, $CO_2$, $CH_4$, NO를 분석하였으며 탄화수소 $C_1-C_4$의 분석은 가스크로마토그래피를 사용하여 분석하였다. 열분해 오일은 회수하여 원소분석, 발열량 분석, 중금속 분석과 아스팔텐(asphaltenes) 분석을 실시하였으며 SIMDIS 분석을 통하여 열분해 오일의 특성을 분석하였다. 분석 결과 나프타(naphtha)는 11.50%, 중간유분(middle distillation)은 44.83%, 중질유(heavy oil)는 43.66%의 결과를 얻었다. 이는 역청과 비교하여 나프타와 중간유분 함량이 높은 경질화된 열분해 오일이 회수되었음을 알 수 있다.

Keywords

References

  1. Masliyah, J., Zhou, Z., Xu, Z., Czarnecki, J. and Hamza, H., "Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands," Can. J. Chem. Eng., 82(4), 628-654(2004).
  2. Rogers, V. V., Liber, K. and MacKinnon, M. D., "Isoation and Characterization of Naphthenic Acids from Athabasca Oil Sands Tailings Pond Water," Chemosphere, 48(5), 519-527(2002). https://doi.org/10.1016/S0045-6535(02)00133-9
  3. Renault, S., Lai, C., Zwiazek, J. J. and MacKinnon, M., "Effect of High Salinity Tailings Water Produced from Gypsum Treatment of Oil Sands Tailings on Plants of the Boreal Forest," Environ. Pollut., 102(2-3), 177-184(1998). https://doi.org/10.1016/S0269-7491(98)00099-2
  4. Pack, Y. K., Choi, W. C., Jeong, S. Y. and Lee, C. W., "High Value-added Technology of Oil Sand," Korean Chem. Eng. Res., 45(2), 109-116(2007).
  5. Lee, J. K. and Ko, H. C., "Oil Sand Development and Future Projects in Canada," Regional Economic Focus, 1(20), 1-13(2007).
  6. http://www.energy.gov.ab.ca/OilSands/pdfs/osgenbrf.pdf.
  7. Fletcher, J. V., Deo, M. D. and Hanson, F. V., "Fluidized Bed Pyrolysis of a Uinta Basin Oil Sand," Fuel, 74(3), 311-316(1995). https://doi.org/10.1016/0016-2361(95)93461-L
  8. Hanson, F. V., Cha, S. M., Deo, M. D. and Obad, A. G., "Pyrolysis of Oil Sand from the Whiterocks Deposit in a Rotary Kiln," Fuel, 71(12), 1455-1463(1992). https://doi.org/10.1016/0016-2361(92)90219-E
  9. Packdel, H. and Roy, C., "Recovery of Bitumen by Vacuum Pyrolysis of Alberta Tar Sand," Energy Fuels, 17(5), 1145-1152 (2003). https://doi.org/10.1021/ef0300242
  10. Deo, M. D., Fletcher, J. V., Shun, D., Hanson, F. V. and Oblad, A. G., "Modelling the Pyrolysis of Tar Sands in Fluidized Bed Reactors," Fuel, 70(11), 1271-1276(1991). https://doi.org/10.1016/0016-2361(91)90213-T
  11. Meng, M., Haoquan, H., Qiumin, Z., Xian, Li. and Bo, W., "Pyrolysis Behaviors of Tumuji Oil Sand by Thermogravimetry(TG) and in a Fixed Bed Reactor," Energy Fuels, 21(5), 2245-2249 (2007). https://doi.org/10.1021/ef070048z
  12. Park, Y. C., Paek, J.-Y., Bae, D.-H. and Shun, D., "Study of Pyrolysis Kinetics of Alberta Oil Sand by Thermogravimetric Analysis," Korean J. Chem. Eng., 26(6), 1608-1612(2009). https://doi.org/10.1007/s11814-009-0277-5
  13. Yahya, H. K., "Study of Extraction and Pyrolysis of Jordan Tar Sand," Int. J. Energy, 23(10), 833-839(1999). https://doi.org/10.1002/(SICI)1099-114X(199908)23:10<833::AID-ER519>3.0.CO;2-0
  14. Ahmed, I. and Gupta, A. K., "Syngas Yield during Pyrolysis and Steam Gasfication of Paper," Applied Energy, 86(9), 1813-1821 (2009). https://doi.org/10.1016/j.apenergy.2009.01.025
  15. Yucel, H. G., "Prediction of Molecular Weight and Density of n-Alkanes $(C_6-C_{44})$," Anal. Chim. Acta., 547(1), 94-97(2005). https://doi.org/10.1016/j.aca.2005.01.072
  16. Zou, N. and Firor, R. L., "A Unique High-Pressure Sample Injection Device for the Agilent 7890A Gas Chromatograph," Agilent technologies Application Note 5989-6081EN, Agilent Technologies Publisher, Wilmington, Delaware, USA(2007).
  17. Shuyuan, L., Jianqiu, W., Huaping, T. and Zhaoliang, W., "Study of Extraction and Pyrolysis of Chinese Oil Sands," Fuel, 74(8), 1191-1193(1995). https://doi.org/10.1016/0016-2361(95)00050-F