Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA

열중량 분석기를 이용한 목재펠릿 및 국내무연탄의 연소 특성 조사

  • Kim, Dong-Won (Green Growth Laboratory, Korea Electric Power Research Institute, Kepco) ;
  • Lee, Jong-Min (Green Growth Laboratory, Korea Electric Power Research Institute, Kepco) ;
  • Kim, Jae-Sung (Green Growth Laboratory, Korea Electric Power Research Institute, Kepco) ;
  • Seon, Pyeong-Ki (Green Growth Laboratory, Korea Electric Power Research Institute, Kepco)
  • 김동원 (한전전력연구원 녹색성장연구소) ;
  • 이종민 (한전전력연구원 녹색성장연구소) ;
  • 김재성 (한전전력연구원 녹색성장연구소) ;
  • 선평기 (한전전력연구원 녹색성장연구소)
  • Received : 2009.09.29
  • Accepted : 2009.11.11
  • Published : 2010.02.28

Abstract

Combustion of the Korean Anthracite and wood-pellet was characterized in air atmosphere with variation of heating rate(5, 10, 20 and $30^{\circ}C/min$) in TGA. The results of TGA have shown that the combustion of the wood-pellet occurred in the temperature range of $200{\sim}620^{\circ}C$ which is much lower than that of Korean anthracite. Activation energies of the wood-pellet and Korean anthracite, determined by using Friedman method were 44.12, 21.45 kcal/mol respectively. Also, their reaction orders(n) and pre-exponential factors(A) were 5.153, 0.7453 and $4.01{\times}10^{16}$, $1.39{\times}10^6(s^{-1})$ respectively. In order to find out the combustion mechanism of the wood-pellet and Korean anthracite, twelve solidstate mechanisms defined by Coats Redfern Method were tested. The solid state combustion mechanisms of the woodpellet and Korean anthracite were found to be sigmoidal curve A3 type and a deceleration curve F1 type respectively. Also, from iso-thermal combustion($300{\sim}900^{\circ}C$) of their char, the combustion characteristics of their char was found. Activation energies of the their char were 27.5, 51.2 kcal/mol respectively. Also, pre-exponential factors(A) were $2.55{\times}10^{12}$, $1.49{\times}10^{10}(s^{-1})$ respectively. Due to the high combustion reactivity of wood-pellet compared with Korean anthracite, combustion atmosphere will be improved by co-combustion with Korean anthracite and wood-pellet.

본 연구에서는 국내 상용 순환유동층 보일러에서 연료로 사용하고 있는 저급 국내무연탄과 혼소용 연료로 이용할 예정인 목재펠릿의 각각의 연소 특성을 조사하기 위해 열중량 분석기(TGA)를 이용하여 비등온 실험(5, 10, 20, $30^{\circ}C/min$) 및 등온 조건으로 촤 연소 실험을 수행하였다. 목재펠릿의 경우는 승온 속도에 따라 차이가 있으나, 국내무연탄에 비해 낮은 온도인 $200{\sim}620^{\circ}C$ 사이에서 연소되었으며, 최대 반응속도를 나타내는 온도 또한 국내무연탄의 그것에 비해 매우 낮음을 알 수 있었다. 비등온 실험 결과를 Friedman 방법으로 해석한 결과, 무게감량이 가장 큰 2차 구간에서의 목재펠릿 및 국내무연탄의 활성화에너지는 44.12, 21.45 kcal/mol이었으며, 반응차수 및 빈도인자는 각각 5.153, 0.7453 및 $4.01{\times}10^{16}$, $1.39{\times}10^6(s^{-1})$임을 확인할 수 있었다. 또한 등온 조건으로 촤 연소 실험 결과, 화학반응 율속단계에서의 목재펠릿 및 국내무연탄의 활성화에너지는 각각 27.5, 51.2 kcal/mol이었으며, 빈도인자는 각각 $2.55{\times}10^{12}$, $1.49{\times}10^{10}(s^{-1})$임을 확인할 수 있었다. 국내무연탄에 비해 목재펠릿이 낮은 온도에서 연소 반응이 시작이 되고 반응차수 및 빈도인자가 높아 반응속도를 빠를 것으로 판단되어 혼소 시 연소 제어가 잘 이루어질 경우, 연소로 내의 연소 분위기가 향상될 것으로 예상된다.

Keywords

References

  1. Miller, B. G. and Tillman, D. A., "Combustion Engineering Issues for Solid Fuel System," Elsevier(2008).
  2. Hodgkinson, N., Thurlow, G. G., Thurlow, "Combustion of Lowgrade Material in Fluidized Bed," AIChE symposium series 73 (161), 109-114(1977).
  3. Kim, D. W., Lee, J. M., Kim, J. S. and Kim, J. J., "Co-combustion of Korean Anthracite with Bituminous Coal in a Circulating Fluidized Bed Combustor," Korean J. Chem. Eng. 24(3), 461-465 (2007). https://doi.org/10.1007/s11814-007-0080-0
  4. Choi, Y. S., "Coal/RDF Co-combustion in the Circulation Fluidized Bed Coal Boiler," J. Korea. Soc. Waste Manage., 24(7), 598-603(2007).
  5. Kim, D. W., Lee, J. M. and Kim, J. S., "Economic Feasibility of Conversion of the Pulverized Coal Firing Boiler using Korean Anthracite into a Circulating Fluidized Bed Boiler," 20th International conference on FBC, 262-270(2009).
  6. Lee, J. M., Kim, D. W., Kim, J. S., Kim, J. J. and Kim, H. S., "Co-combustion of Korean Anthracite with Bituminous Coal in a Circulating Fluidized Bed Combustor," Korean Chem. Eng. Res., 44(5), 489-497(2006).
  7. Sun, J. T., Huang, Y. D., Gong, G. F. and Cao, H. L., "Thermal Degradation Kinetics of Poly(methylphenysiloxane) Containing Methacryloyl Groups," Polym. Degrad. Stabil., 91, 339-346(2006). https://doi.org/10.1016/j.polymdegradstab.2005.04.037
  8. Friedman, H. L., "Kinetics of Thermal Degradation of Charforming Plastics from Thermogravimetry. Application to a Phenolic Plastic," Journal of Polymer Science 6(1), 183-195(1964).
  9. Ozawa, T., "A New Method of Analyzing Thermogravimetric Data," Bull. Chem. Soc. Jpn., 38(11), 1881-1886(1965). https://doi.org/10.1246/bcsj.38.1881
  10. Flynn, J. H. and Wall, L. A., "General Treatment of the Thermogravimetry of Polymers," Journal of Research of the National Bureau of Standards-A, Phys. Chem., 70A(6), 487-523 (1966). https://doi.org/10.6028/jres.070A.043
  11. Coats, A. W. and Redern, J. P., "Kinetics Parameters from the Thermogravimetric Data," Nature(Lond), 201, 68-69(1964). https://doi.org/10.1038/201068a0
  12. Shin, I. S, Kim, U. Y., Sung, M. S., Kang, Y., Yoon, B. T. and Choi, M. J., "Investigation on Pyrolysis Characteristics of Waste Polystyrene Plastics(Yakult Bottles) Using TGA," J. Korea Soc. Waste Manage., 25(1), 36-42(2008).
  13. Lee, J. M., Kim, D. W. and Kim, J. S., "Reactivity Study of Combustion for Coals and Chars in Relation to Volatile Content," Korean J. Chem. Eng., 26(2), 489-495(2008). https://doi.org/10.1007/s11814-009-0083-0
  14. Yorulmaz, S. Y. and Atimtay, A. T., "Investigation of Combustion Kinetics of Treated and Untreated Waste Wood Samples with Thermogravimetric Analysis," Fuel Process. Technol., 90, 939-946(2009). https://doi.org/10.1016/j.fuproc.2009.02.010