Devolatilization Characteristics of Municipal Wood Waste

도시 폐기물 폐목재의 탈휘발 특성

  • Choi, Jeong-Hoo (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Min Ha (Department of Chemical Engineering, Konkuk University) ;
  • Jo, Mi Young (Department of Chemical Engineering, Konkuk University) ;
  • Park, Ki Hoon (Department of Chemical Engineering, Konkuk University) ;
  • Jang, Eunjin (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Jong-Min (Green Growth Laboratory, Korea Electric Power Research Institute, KEPCO)
  • 최정후 (건국대학교 화학공학과) ;
  • 김민하 (건국대학교 화학공학과) ;
  • 조미영 (건국대학교 화학공학과) ;
  • 박기훈 (건국대학교 화학공학과) ;
  • 장은진 (건국대학교 화학공학과) ;
  • 이종민 (한전전력연구원 녹색성장연구소)
  • Received : 2009.09.16
  • Accepted : 2009.11.04
  • Published : 2010.02.28

Abstract

Devolatilization characteristics of municipal wood waste were measured by using an isothermal thermogravimetric analyzer(TGA) and discussed. Volatile matter was mainly released at temperatures between $250^{\circ}C$ and $350^{\circ}C$. The volatile content increased with an increase of temperature but levelled off at temperatures ${\geq}527^{\circ}C$. The rate of devolatilization could be expressed by a shrinking particle model which was ruled by the reaction rate. The activation energy ranged from 13.1 to 18.5 kJ/g mol.

질소 분위기의 고온($350{\sim}900^{\circ}C$)의 등온 열중량 분석기를 사용하여 도시 폐기물 폐목재의 탈휘발 특성을 측정 및 고찰하였다. 탈휘발은 온도범위 $250{\sim}350^{\circ}C$에서 주로 발생하였다. 휘발분의 양은 온도가 증가할수록 증가하였으나, $527^{\circ}C$ 이상에서는 일정해졌다. 화학반응 율속의 shrinking particle model로 탈휘발반응을 잘 표현할 수 있었다. 탈휘발 활성화 에너지는 13.1~18.5 kJ/g mol이었다.

Keywords

References

  1. Kim, J. D., Choi, I. S. and Lee, B. S., "A Modelling Study on the Pyrolysis of Saw-Dust in a Rotary Kiln," HWAHAK KONGHAK, 22(1), 15-24(1984).
  2. Choi, K. S., Woo, S. I. and Chung, I. J., "A Study on the Pyrolysis of Wood by Infrared Spectroscopy and Thermogravimetric Analysis," HWAHAK KONGHAK, 25(6), 563-569(1987).
  3. Maniatis, K. and Buekens, A., "Fast Pyrolysis of Biomass," in A. V. Bridgwater and J. L. Kuester(Ed.), Res. Thermochem. Biomass Convers.,[Ed. Rev. Pap. Int. Conf.], Elsevier, London, 179-191 (1988).
  4. Reina, J., Velo, E. and Puigjaner, L., "Kinetic Study of the Pyrolysis of Waste Wood," Ind. Eng. Chem. Res., 37(11), 4290-4295(1998). https://doi.org/10.1021/ie980083g
  5. Di Blasi, C. and Branca, C., "Global Degradation Kinetics of Wood and Agricultural Residues in Air," Can. J. Chem. Eng., 77(3), 555-561(1999). https://doi.org/10.1002/cjce.5450770316
  6. Di Blasi, C., Branca, C., Santoro, A. and Perez Bermudez, R. A., "Weight Loss Dynamics of Wood Chips Under Fast Radiative Heating," J. Anal. Appl. Pyrolysis., 57(1), 77-90(2001). https://doi.org/10.1016/S0165-2370(00)00119-4
  7. Branca, C. and Di Blasi, C., "Kinetics of the Isothermal Degradation of Wood in the Temperature Range 528-708K," J. Anal. Appl. Pyrolysis., 67(2), 207-219(2003). https://doi.org/10.1016/S0165-2370(02)00062-1
  8. Branca, C. and Di Blasi, C., "Global Interinsic Kinetics of Wood Oxidation," Fuel, 83(1), 81-87(2003, Volume Date 2004). https://doi.org/10.1016/S0016-2361(03)00220-5
  9. Tsamba, A. J., Yang, W. and Blasiak, W., "Pyrolysis Characteristics and Global Kinetics of Coconut and Cashew Nut Shells," Fuel Process. Technol., 87(6), 523-530(2006). https://doi.org/10.1016/j.fuproc.2005.12.002
  10. Liu, Q., Wang, S., Wang, K., Luo, Z. and Cen, K., "Pyrolysis of Wood Species Based on the Compositional Analysis," Korean J. Chem. Eng., 26(2), 548-553(2009). https://doi.org/10.1007/s11814-009-0093-y
  11. Levenspiel, O., Chemical Reaction Engineering, 3rd ed., John-Wiley and Sons, Inc., New York, NY, 607(1999).