Enzyme Activity of Lipase Immobilized Non-Woven Fabric for Biodiesel Production

바이오디젤 생산을 위한 리파아제 고정 부직포의 효소활성화

  • Kim, Ye Jin (Department of Safety Environmental System Engineering, Dongguk University) ;
  • Lee, Sung Hae (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Hong, Sung Kyu (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Kim, Min (Department of Safety Environmental System Engineering, Dongguk University) ;
  • Park, Sang Jin (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 김예진 (동국대학교 안전환경시스템공학과) ;
  • 이성해 (동국대학교 화공생물공학과) ;
  • 홍성규 (동국대학교 화공생물공학과) ;
  • 김민 (동국대학교 안전환경시스템공학과) ;
  • 박상진 (동국대학교 화공생물공학과)
  • Received : 2009.10.30
  • Accepted : 2009.12.10
  • Published : 2010.02.28

Abstract

This study is to optimize the enzyme(lipase) activity for biodiesel production. The ion-exchanged non-woven fabrics(EtA, DEA-EtA non-woven fabric) containing ethanolamine, diethylamine groups are used by radiation induced grafted polymerization onto a non-woven fabric for more effective immobilization of lipase. Since the porous hollow fiber membranes are showed the low throughputibehe non-woven fabric membranes are used for biodiesel production. The physical charateristics of enzyme immobilized and the enzyme activity to EtA and DEA-EtA non-woven fabrics are studied. The EtA non-woven fabrics are quite similar to DEA-EtA non-woven fabric for the amount of enzyme immobilized(EtA non-woven fabric:15.69 mg/g, DEA-EtA non-woven fabric:14.45 mg/g) but DEA-EtA non-woven fabrics have shown the lower permeabiliquite the organic solvent than the EtA non-woven fabrics(EtA non-woven fabric:$3.50mol/h{\cdot}kg$, DEA-EtA non-woven fabric:$0.38mol/h{\cdot}kg$). Optimum characteristics of ehe non-woven fabric membranes and the limilaractivity are also investigated for the effective biodiesel production.

본 연구의 목적은 효소법을 이용한 바이오디젤의 생산에서의 효소(lipase) 활성화를 최적화함에 있다. 효과적인 방법으로 효소를 고정하기 위해 방사선 그라프트 중합법을 이용한 부직포에 음이온 교환기인 ethanolamine과 diethylamine을 도입시켜 음이온 교환 부직포(이때 얻어진 부직포는 EtA, DEA-EtA 부직포라 함)를 합성하였다. 기존에 사용하던 다공성 중공사막의 경우 시간이 지남에 따라 막힘 현상에 따라 유속이 현저하게 줄어드는 점을 보완하고자 기공(pore size)이 $300{\mu}m$인 부직포를 선택하였다. 이 부직포에 음이온 교환기가 도입된 EtA, DEA-EtA 부직포의 최적효소 흡착 특성과 효소 활성도에 대하여 고찰하였다. 그 결과 효소 흡착량은 EtA, DEA-EtA 부직포가 비슷하였으나(EtA non-woven fabric: 15.69 mg/g, DEA-EtA non-woven fabric: 14.45 mg/g) 기름을 투과시킨 결과 효소 활성화는 DEA-EtA 부직포가 EtA 부직포에 비해 현저히 떨어짐(EtA non-woven fabric: $3.50mol/h{\cdot}kg$, DEA-EtA non-woven fabric: $0.38mol/h{\cdot}kg$)을 알 수 있었다. 이 음이온교환기를 이용해 효율적인 바이오디젤 생산을 위한 온도, 효소고정량, 기름과 알코올과의 관계 등의 최적의 조건을 도출하였다.

Keywords

References

  1. Kyung, H. R. and Young, T. O., "The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel," Teansactions of KSAE, 14(4), 115-122(2006).
  2. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Possible Methods for Biodiesel Production," Renew. Sust. Energ. Rev., 11, 1300-1311(2007). https://doi.org/10.1016/j.rser.2005.08.006
  3. Funda, Y., Kazan, D. and Akin, A. N., "Biodiesel Production from Waste Oils by Using Lipase Immobilized on Hydrotalcite and Zeolites," Chem. Eng. J., 134, Issues 1-3, 262-267(2007). https://doi.org/10.1016/j.cej.2007.03.041
  4. Srivastava, A. and Prasad, R., "Triglycerides-based Diesel Fuels," Renew. Sust. Energ. Rev., 4, 111-133(2000). https://doi.org/10.1016/S1364-0321(99)00013-1
  5. Madras, G., Kolluru, C. and Kumar, R., "Synthesis of Biodiesel in Supercritical Fluids," Fuel., 83, 2029-2033(2004). https://doi.org/10.1016/j.fuel.2004.03.014
  6. Freedman, B., Pryde, E. H. and Mounts, T. L., "Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils," J. Am. Oil. Chem. Soc., 61, 1638-1643(1984). https://doi.org/10.1007/BF02541649
  7. Haas, M., "The Interplay Between Feedstock Quality and Esterification Technology in Biodiesel Production," Lipid Technology, 16, 7-11(2004).
  8. Brady, C., Metcalfe, L., Slaboszewski, D. and Frank, D., "Lipase Immobilized on a Hydrophobic, Microporous Support for the Hydrolysis of Fats," J. Am. Oil. Chem. Soc., 65, 917-921(1988). https://doi.org/10.1007/BF02544510
  9. Kawakita, H., Sugita, K., Saito, K., Tamada, M., Sugo, T. and Kawamoto, H., "Production of Cycloisomaltooligosaccharides from Dextran Using Enzyme Immobilized in Multilayers Onto Porous Membranes," Biotechnol. Progress, 18, 465-469(2002). https://doi.org/10.1021/bp0200245
  10. Goto, M., Kamiya, N., Miyata, M. and Nakashio, F., "Enzyme Esterification by Surfactant-coated Lipase In Organic Media," Biotechnol. Prog., 10, 263-268(1994). https://doi.org/10.1021/bp00027a005
  11. Kim, B. S., Kim, M., Heo, K. B., Hong, J. H., Na, W. J. and Kim, J. H., "Preparation of Anion-exchange Membrane for Selective Separation of Urea and Ion," J. Ind. Eng. Chem., 17, 303-309(2006).
  12. Goto, M., Kawakita, H., Uezu, K., Tsuneda, S., Saito, K., Goto, M., Tamada, M. and Sugo, T., "Esterification of Lauric Acid Using Lipase Immobilized in the Micropores of a Hollow-fiber Membrane," J. Am. Oil. Chem. Soc., 83, 209-213 (2006). https://doi.org/10.1007/s11746-006-1195-x
  13. Kim, H.-S. and Kim, M., "Synthesis and Characterization of Chelating Hollow Fiber Membrane Prepared by Radiation Graft Polymerization," Proc. Membr. Soc. Conference, 67-70(1999).
  14. Kim, M, "Amino Acid Addition to Epoxy-group-containing Polymer Chain Grafted onto a Porous Membrane," J. Membr. Sci., 56, 289-302(1991). https://doi.org/10.1016/S0376-7388(00)83039-2
  15. Yeo, J. M., Park, C. H., Lee, D. H., Kim, S. W., "Lipase Immobilization Using Cross-linking for Esterification of Oil to Biodiesel," Theor. Appl. Chem. Eng., 10(2), 1538-1541 (2004).
  16. Eriksson, K.-E. L., "Enzyme Applications in Fiber Processing," American Shemical Society(1998).