Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion

전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향

  • Kim, Dong-Jin (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Hye-Young (Department of Environmental Sciences and Biotechnology, Hallym University)
  • 김동진 (한림대학교 환경생명공학과) ;
  • 김혜영 (한림대학교 환경생명공학과)
  • Received : 2009.10.28
  • Accepted : 2009.11.20
  • Published : 2010.02.28

Abstract

Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.

하폐수 처리과정에서 발생되는 슬러지는 주로 혐기소화에 의해 처리되며 슬러지를 감량하고 메탄을 생산할 수 있어 많이 이용되고 있다. 슬러지의 전처리는 혐기소화의 율속단계인 가수분해를 높여 처리속도를 향상시키므로 많은 연구가 진행 중이다. 본 연구에서는 열, 초음파, 열-알칼리의 전처리 기술에 따른 슬러지의 가수분해(가용화) 효과와 전처리한 슬러지를 혐기소화하여 메탄 생산량과 슬러지의 감량 효과를 비교하였다. 하수와 폐수 슬러지 가용화율은 열-알칼리 동시 처리한 경우에는 67과 70%로 가장 높았고 다음으로 초음파 처리와 열처리가 40% 이상의 비슷한 가용화율을 보였다. 혐기소화 가스의 메탄 함량은 45~70% 범위로 유지되었고 전처리한 슬러지가 control에 비해 높게 나타났다. 메탄 생산량은 열처리, 초음파 처리, 열-알칼리를 같이 처리한 경우가 control에 비해 각각 하수슬러지는 2.6, 2.7, 3.5배, 폐수 슬러지는 3.5, 4.1, 4.2배 증가하였다. 혐기소화 슬러지의 감량효과는 전처리한 슬러지가 control에 비해 5~19% 포인트 높게 나타났으며 열-알칼리 처리한 경우가 초음파와 열처리에 비해 우수한 감량 효과를 보였다. 위의 결과로부터 전처리가 메탄 생산량에서 뿐만 아니라 슬러지 처리처분 비용 절감에 있어서도 중요한 역할을 함을 확인할 수 있었고 열-알칼리 동시 처리가 가장 우수한 성능을 보였다.

Keywords

References

  1. Ministry of Environment, A Current Status of National Waste Generation and Treatment 2006(2007).
  2. Ministry of Environment, A National Plan on Waste Management, 2nd Ed.(2002).
  3. Ministry of Environment, A National Plan on Sewage Sludge Management(2007).
  4. Lee, S. W., "An Energy Characteristics of Carbonization Residue Produced from Sewage Sludge Cake," Korean Chem. Eng. Res., 47(2), 230-236(2009).
  5. Gerardi, M. H., The Microbiology of Anaerobic Digesters. 1st ed., Wiley(2003).
  6. Deublein, D., Steinhauser, A., Biogas from Waste and Renewable Resources. 1st ed., Wiley-VCH(2008).
  7. Vavilin, V. A., Rytov, S. V., Lokshina, L. Y., Pavlostathis, S. G. and Barlaz, M. A., "Distributed Model of Solid Waste Digestion - Effects of Leachate Recirculation and pH Adjustment," Biotechnol. Bioeng., 81, 66-73(2002).
  8. Aquino, S. F. and Stuckey, D. C., "Integrated Model of the Production of Soluble Microbial Products (SMP) and Extracellular Polymeric Substances (EPS) in Anaerobic Chemostats during Transient Conditions," Biochem. Eng. J., 38, 138-146 (2008). https://doi.org/10.1016/j.bej.2007.06.010
  9. Metcalf & Eddy. Wastewater Engineering: Treatment and Reuse. 4th ed., McGraw-Hill(2003).
  10. Weemaes, M. P. J. and Verstraete, W., "Evaluation of Current Wet Sludge Disintegration Techniques," J. Chem. Technol. Biotechnol., 73, 83-92(1998). https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
  11. Shimizu, T., Kudo, K. and Nasu, Y., "Anaerobic Waste-activated Sludge Digestion-a Bioconversion Mechanism and Kinetic Model," Biotechnol. Bioeng., 41, 1082-1091(1993). https://doi.org/10.1002/bit.260411111
  12. Neis, U., Tiehm, A. and Nickel, K., "Enhancement of Anaerobic Sludge Digestion by Ultrasonic Disintegration," Water Sci. Technol., 42, 73-80(2002).
  13. Li, Y. Y. and Noike, T., "Upgrading of Anaerobic Digestion of Waste Activated Sludge by Thermal Pre-treatment," Water Sci. Technol., 8, 209-215(1997).
  14. Lin, J. G., Chang, C. N. and Chang, S. C., "Enhancement of Anaerobic Digestion of Waste Activated Sludge by Alkaline Solubilization," Bioresour. Technol., 62, 85-90(1997). https://doi.org/10.1016/S0960-8524(97)00121-1
  15. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater. 21st ed., APHA, AWWA, WEF(2005).
  16. Appels, L., Baeyens, J., Degrve, J. and Dewil, R., "Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge," Prog. Energy. Combust. Sci., 34, 755-781(2008). https://doi.org/10.1016/j.pecs.2008.06.002
  17. Tanaka, S., Kobayashi, T., Kamiyama, K. and Bildan, M. L. S., "Effects of Thermochemical Pre-treatment on the Anaerobic Digestion of Waste Activated Sludge," Water Sci. Technol., 8, 209-215(1997).
  18. Oh, S. E., "Improvement of Anaerobic Digestion Rate of Biosolids in Waste Activated Sludge(WAS) by Ultrasonic Pretreatment," Environ. Eng. Sci., 11, 143-148(2006).
  19. Barber, W. P., "The Effects of Ultrasound on Sludge Digestion," J of the Chartered Institution of Water and Environmental Management, 19, 2-7(2005). https://doi.org/10.1111/j.1747-6593.2005.tb00542.x