Risk Factors and Prognosis for Periventricular Leukomalacia According to Neuroimage in Preterm Infants

미숙아 뇌실주위 백질연화증에서 뇌영상 분류에 따른 예후와 위험인자

  • Ahn, Jung-Hee (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Seo, Yoo-Jin (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Yoon, Jung-Rim (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Shim, Gyu-Hong (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Kim, Seong-Hee (Department of Radiology, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Cho, Woo-Ho (Department of Radiology, Inje University College of Medicine, Sanggye Paik Hospital) ;
  • Chey, Myoung-Jae (Department of Pediatrics, Inje University College of Medicine, Sanggye Paik Hospital)
  • 안정희 (인제대학교 상계백병원 소아청소년과) ;
  • 서유진 (인제대학교 상계백병원 소아청소년과) ;
  • 윤정림 (인제대학교 상계백병원 소아청소년과) ;
  • 심규홍 (인제대학교 상계백병원 소아청소년과) ;
  • 김성희 (인제대학교 상계백병원 영상의학과) ;
  • 조우호 (인제대학교 상계백병원 영상의학과) ;
  • 최명재 (인제대학교 상계백병원 소아청소년과)
  • Published : 2010.05.31

Abstract

Purpose : The aim of this study was to determine the risk factors, clinical characteristics and prognosis for the development of periventricular leukomalacia (PVL) in preterm infants according to the extent and site of the PVL. Methods : The medical records of infants (under 36 weeks of gestational age) delivered from January 1999 to December 2008 were reviewed. Twenty-five preterm infants with were PVL were diagnosed by brain magnetic resonance imaging (MRI) and an addition 50preterm infants with no brain lesions were enrolled in this study. The perinatal and neonatal risk factors for the development of PVL was determine in these infants. Mental and Psychomotor Developmental Indices (MDI, PDI) were assessed by a clinical psychologist using the Bayley Scales of Infant Development II. We compared the differences of the clinical characteristics and prognosis according to brain MRI findings. Results : Maternal fever, young maternal age, extended oxygen use, hypotension within the first week of birth, use of inotropics within the first week of birth, and respiratory distress syndrome were the risk factors associated with PVL (P <0.05). In the multivariate analysis, maternal fever and extended oxygen use were statistically significant independent risk factors (P <0.05). The mean MDI and PDI scores of the PVL group (74.4$\pm$ 27.8 and 58.0$\pm$17.7) were significantly lower than those of the control group (103.5$\pm$8.9 and 101.7$\pm$16.1, P <0.05). Conclusion : Maternal fever and extended oxygen use were independent risk factors for PVL. We should pay attention to infants who had the risk factors and follow them up closely by brain imaging study and Bayley Scales of Infant Development II.

목 적 : 최근 신생아집중치료술의 발전으로 미숙아의 생존율이 증가하고 있다. 그러나 미숙아에서 저산소성 허혈성 손상의 주된 병변인 뇌실주위 백질연화증의 발생 위험성은 여전히 크며, 이는 뇌성마비 등의 심한 신경학적 합병증을 일으킬 수 있다는 점에서 임상적으로 지속적인 관심을 요하는 질환이다. 이에 본원에서 발생한 뇌실주위 백질연화증의 위험인자에 대하여 알아보고 뇌 자기공명영상 소견과 뇌초음파 분류에 따른 임상적 특징의 차이 및 예후에 대하여 알아보고자 이번 연구를 시행하였다. 방 법: 1999년 1월부터 2008년 12월까지 10년간 본원 신생아집중치료실에 입원한 36주 미만의 미숙아를 대상으로 하였고, 뇌 MRI나 뇌 초음파에서 뇌실주위 백질연화증소견을 보였던 25례를 환아군으로, 이들과 재태연령과 출생체중은 비슷하고 뇌실주위 백질연화증소견을 보이지 않았던 50례를 대조군으로 선정하여 두 군에서 뇌실주위 백질연화증의 위험인자로 예상되는 출산전, 주산기, 출산 후 요인과 Baley 발달 검사 결과 등을 후향적으로 비교 분석 하였다. 그리고 환아군에서 뇌MRI T2 강조 영상의 고신호 병변군과 저신호 병변군, 뇌초음파에서는 병변의 일측성, 양측성인 경우와 낭성, 비낭성 그리고, 국소성, 미만성을 구분하여 각각의 임상적 특징과 Baley 발달 검사 결과 등을 비교 분석하였다. 결 과:전체 374명의 대상 환자 중에서 뇌실주위 백질연화증이 25례(6.6%)에서 진단되었다. 환아군과 대조군의 비교에서 산모의 발열, 어린 산모의 나이, 장기간의 산소투여, 생후 1주 이내 발생한 저혈압, 생후 1주 이내 심수축제 사용과 호흡곤란 증후군이 뇌실주위 백질연화증 발생에 통계적으로 유의하게 관계가 있었다. 다중회귀 분석에서는 산모의 발열 및 장기간의 산소 투여가 독립적인 위험인자였다. Bayley 발달 검사 결과를 분석하였을 때 환아군은 정신 척도와 운동 척도가 각각 74.4$\pm$27.8과 58.0$\pm$17.7로 대조군의 103.5$\pm$8.9과 101.7$\pm$16.1 보다 통계적으로 의미있게 낮았다. 결 론 : 산모의 발열 및 장기간의 산소투여가 뇌실주위 백질연화증에 독립적으로 영향을 미치는 인자로 분석되었다. 그러므로, 이러한 위험 인자를 가진 미숙아들에 있어서 뇌 MRI 검사와 Bayley 발달 검사가 뇌실주위 백질연화증의 진단과 신경학적 합병증에 예후를 측정하는데 도움이 될 수 있다.

Keywords

References

  1. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: WB Saunders Co, 2008:433-6.
  2. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001;50:553-62. https://doi.org/10.1203/00006450-200111000-00003
  3. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: WB Saunders Co, 2008:359-79.
  4. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110-24. https://doi.org/10.1016/S1474-4422(08)70294-1
  5. Choi JH, Chang YP. Magnetic resonance imagining findings of the white matter abnormalities in the brain of very-low-birth-weight infants. Korean J Pediatr 2009;52:1127-35. https://doi.org/10.3345/kjp.2009.52.10.1127
  6. Kim MJ, Kim AS, Choi SM, Kim DK, Lee DS, Cho SM, et al. Incidence and risk factors for cystic periventricular leukomalacia in premature low birth weight infants. J Korean Soc Neonatol 2007;14:22-9.
  7. Lee HS, Lee SK, Kim YJ, Lee SG. Development of periventricular leukomalacia and severe intraventricular hemorrhage in very low birth weight newborns and relationship with ventilator care (study of ventilator care as a risk factor of PVL and PV-IVH). Korean J Pediatr 2005;48:1330-6.
  8. Lee SH, Kim SH, Lee KH, You DK, Choi SJ, Hwang JH, et al. A study on the incidence and risk factors of cystic periventricular leukomalacia in very low birth weight infants. J Korean Soc Neonatol 2003;10:61-6.
  9. Jensen FE. The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 2002;20:339-47. https://doi.org/10.1016/S0736-5748(02)00012-6
  10. Jensen FE. Developmental factors regulating susceptibility to perinatal brain injury and seizures. Curr Opin Pediatr 2006;18:628-33. https://doi.org/10.1097/MOP.0b013e328010c536
  11. Nanba Y, Matsui K, Aida N, Sato Y, Toyoshima K, Kawataki M, et al. Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics 2007;120:e10-9. https://doi.org/10.1542/peds.2006-1844
  12. Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA 2006;296:1602- 8. https://doi.org/10.1001/jama.296.13.1602
  13. Sie LT, Hart AA, van Hof J, de Groot L, Lems W, Lafeber HN, et al. Predictive value of neonatal MRI with respect to late MRI findings and clinical outcome. A study in infants with periventricular densities on neonatal ultrasound. Neuropediatrics 2005;36:78-89. https://doi.org/10.1055/s-2005-837574
  14. Damiano DL. Rehabilitative therapies in cerebral palsy: the good, the not as good, and the possible. J Child Neurol 2009;24:1200-4. https://doi.org/10.1177/0883073809337919
  15. Bayley N. Bayley scales of infant development. 2nd ed. San Antonio: Psychological Co, 1993.
  16. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 1997;177:19-26. https://doi.org/10.1016/S0002-9378(97)70432-0
  17. Report of working group of the British Association of Perinatal Medicine and Neonatal Nurses Association on categories of babies requiring neonatal care. Arch Dis Child 1992; 67:868-9. https://doi.org/10.1136/adc.67.7_Spec_No.868
  18. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-40. https://doi.org/10.1016/0196-6553(88)90053-3
  19. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia : WB Saunders Co, 2008:541.
  20. Leijser LM, Liauw L, Veen S, de Boer IP, Walther FJ, van Wezel-Meijler G. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants. Neuroradiology 2008;50:799-811. https://doi.org/10.1007/s00234-008-0408-4
  21. De Vries LS, Connell JA, Dubowitz LM, Oozeer RC, Dubowitz V, Pennock JM. Neurological, electrophysiological and MRI abnormalities in infants with extensive cystic leukomalacia. Neuropediatrics 1987;18:61-6. https://doi.org/10.1055/s-2008-1052453
  22. de Vries LS, Eken P, Groenendaal F, van Haastert IC, Meiners LC. Correlation between the degree of periventricular leukomalacia diagnosed using cranial ultrasound and MRI later in infancy in children with cerebral palsy. Neuropediatrics 1993;24:263-8. https://doi.org/10.1055/s-2008-1071554
  23. Jacobson LK, Dutton GN. Periventricular leukomalacia: an important cause of visual and ocular motility dysfunction in children. Surv Ophthalmol 2000;45:1-13. https://doi.org/10.1016/S0039-6257(00)00134-X
  24. Melhem ER, Hoon AH Jr, Ferrucci JT Jr, Quinn CB, Reinhardt EM, Demetrides SW, et al. Periventricular leukomalacia: relationship between lateral ventricular volume on brain MR images and severity of cognitive and motor impairment. Radiology 2000;214:199-204. https://doi.org/10.1148/radiology.214.1.r00dc35199
  25. Scher MS, Dobson V, Carpenter NA, Guthrie RD. Visual and neurological outcome of infants with periventricular leukomalacia. Dev Med Child Neurol 1989;31:353-65.
  26. Virchow R. Zur Pathologischen Anatomie des Gehirns : I. Congenitale Encephalitis and myelitis. Virchows Arch 1867;38:129-38. https://doi.org/10.1007/BF02286715
  27. Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 1962;7:386-410. https://doi.org/10.1001/archneur.1962.04210050022004
  28. Trounce JQ, Rutter N, Levene MI. Periventricular leucomalacia and intraventricular haemorrhage in the preterm neonate. Arch Dis Child 1986;61:1196-202. https://doi.org/10.1136/adc.61.12.1196
  29. Fawer CL, Calame A, Perentes E, Anderegg A. Periventricular leukomalacia: a correlation study between real-time ultrasound and autopsy findings. Periventricular leukomalacia in the neonate. Neuroradiology 1985;27:292-300. https://doi.org/10.1007/BF00339560
  30. Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: WB Saunders Co, 2008:247-324.
  31. Miall-Allen VM, de Vries LS, Whitelaw AG. Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child 1987;62:1068-9. https://doi.org/10.1136/adc.62.10.1068
  32. Faix RG, Donn SM. Association of septic shock caused by early-onset group B streptococcal sepsis and periventricular leukomalacia in the preterm infant. Pediatrics 1985;76:415-9.
  33. Fujimoto S, Togari H, Yamaguchi N, Mizutani F, Suzuki S, Sobajima H. Hypocarbia and cystic periventricular leukomalacia in premature infants. Arch Dis Child 1994;71:F107-10. https://doi.org/10.1136/fn.71.2.F107
  34. Greisen G, Munck H, Lou H. Severe hypocarbia in preterm infants and neurodevelopmental deficit. Acta Paediatr Scand 1987;76:401-4. https://doi.org/10.1111/j.1651-2227.1987.tb10489.x
  35. Low JA, Froese AF, Galbraith RS, Sauerbrei EE, McKinven JP, Karchmar EJ. The association of fetal and newborn metabolic acidosis with severe periventricular leukomalacia in the preterm newborn. Am J Obstet Gynecol 1990;162:977-81. https://doi.org/10.1016/0002-9378(90)91299-R
  36. Perlman JM, Hill A, Volpe JJ. The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: ductal steal in the premature newborn infant. J Pediatr 1981;99:767-71. https://doi.org/10.1016/S0022-3476(81)80408-8
  37. Perlman JM, Volpe JJ. Episodes of apnea and bradycardia in the preterm newborn: impact on cerebral circulation. Pediatrics 1985;76:333-8.
  38. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics 1996;98:918-24.
  39. Zupan V, Gonzalez P, Lacaze-Masmonteil T, Boithias C, d'Allest AM, Dehan M, et al. Periventricular leukomalacia: risk factors revisited. Dev Med Child Neurol 1996;38:1061-7.
  40. Pierrat V, Duquennoy C, van Haastert IC, Ernst M, Guilley N, de Vries LS. Ultrasound diagnosis and neurodevelopmental outcome of localised and extensive cystic periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed 2001;84:F151-6. https://doi.org/10.1136/fn.84.3.F151
  41. Joint Committee on Infant Hearing 1994 Position Statement. American Academy of Pediatrics Joint Committee on Infant Hearing. Pediatrics 1995;95:152-6.
  42. Counsell SJ, Rutherford MA, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 2003;88:F269-74. https://doi.org/10.1136/fn.88.4.F269
  43. da Silva LF, Hoefel Filho JR, Anes M, Nunes ML. Prognostic value of 1H-MRS in neonatal encephalopathy. Pediatr Neurol 2006;34:360-6. https://doi.org/10.1016/j.pediatrneurol.2005.10.011
  44. Fan GG, Yu B, Quan SM, Sun BH, Guo QY. Potential of diffusion tensor MRI in the assessment of periventricular leukomalacia. Clin Radiol 2006;61:358-64. https://doi.org/10.1016/j.crad.2006.01.001
  45. Jenkins DD, Chang E, Singh I. Neuroprotective interventions: is it too late? J Child Neurol 2009;24:1212-9. https://doi.org/10.1177/0883073809338412
  46. Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, et al. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr 2003;143:713-9. https://doi.org/10.1067/S0022-3476(03)00419-0
  47. Gonzalez FF, Ferriero DM. Neuroprotection in the newborn infant. Clin Perinatol 2009;36:859-80. https://doi.org/10.1016/j.clp.2009.07.013