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ALMOST LINDELOF FRAMES
MEE KyuNG KHANG

ABSTRACT. Generalizing Lindel6f frames and almost compact frames,
we introduce a concept of almost Lindeldf frames. Using a concept
of d-filters on frames, we characterize almost Lindeldf frames and
then have their permanence properties. We also show that almost
Lindelof regular D(X;) frames are exactly Lindelof frames. Finally
we construct an almost Lindel6fication of a frame L via the simple
extension of L associated with the set of all -filters F on L with
V{z*lx € F} =e.

1. Introduction and preliminaries

The concept of frames(=locales) was introduced by Ehresmann([3])
and Bénabou([1]) and Isbell has pointed out the importance of frames for
a study of topological structures([5]). In 1981, Johnstone showed the Ty-
chonoff theorem in the setting of frames without the axiom of choice([6])
and since then there were numerous authors who have produced remark-
able results on frames([7]). We have introduced a concept of Lindelof
frames and Lindel6f biframes and obtained their Lindeldfications(][8],
[9])-

This paper is a sequel to the above papers. It is well known that
almost compact spaces and its frame version are really important gen-
eralizations of compact spaces. Since dense elements can be defined in
a frame, one can easily have a counterpart of dense subcover in a frame.
The purpose of this paper is to introduce almost Lindelof frames and
study them. Introducing d-filters on frames, we characterize almost Lin-
del6f frames and then using simple extension associated with a certain
set of d-filters on frames, we construct almost Lindelofications of frames.
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First we collect basic definitions and results on frames. For general no-
tions and facts concerning frames, we refer to Johnstone[7] and Khang]9].

DEFINITION 1.1. (1) A frame is a complete lattice L in which binary
meet distributes over arbitrary join, that is, tA\/ S = \/{zAs € S}
for any x in L and any subset S of L.
(2) A frame homomorphism is a map h : L — M between frames L
and M preserving all finitary meets and binary joins.

We will denote the bottom element of a frame L by 0 or 0y and the
top element by e or ey.

For any element a of a frame L, the map a A _ : L, — L preserves
arbitrary joins; hence it has a right adjoint, which will be denoted by
a — _: L — L. In particular, a — 0 exists for any a in L and we write
a — 0 = a*, called the pseudocomplement of a.

DEFINITION 1.2. (1) An element d in a frame L is called dense if
d* = 0.
(2) A frame homomorphism h : L — M is called dense(codense, resp.)
if h(z) = 0(h(z) = e, resp.) implies x = O(e, resp.).

We note that an element u in the frame (X) of a topological space
(X, Q(X)) is dense if and only if it is dense in the space.

DEFINITION 1.3. (1) Let L be a frame and a, b in L. We say that
a is rather below b if there exists ¢ in L such that a A ¢ = 0 and
bV ¢ = e, equivalently, a* V b = e. In this case, we write a < b.

(2) A frame L is said to be regular if for any a in L, a = \/{b € L|b <

a}.
We note that u < v in Q(X) means @ C v, for a topological space
(X, Q(X)) and it is clear that a topological space (X, Q(X)) is regular if
and only if Q(X) is a regular frame.

The following definition is a natural generalization of compact frames
and Lindelof spaces.

DEFINITION 1.4. A frame L is said to be a Lindelof frame if for any
subset S of L with \/ S = e, there is a countable subset C of S with
VC=e.
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A 1-1 frame homomorphism is clearly codense and therefore the fol-
lowing is immediate :

ProrosiTiON 1.5. If h : L — M is a 1-1 frame homomorphism and
M is a Lindelof frame, then L is a Lindelof frame.

DEFINITION 1.6. ([2]) A frame L is said to be a D(X;) frame if for
any a in L and any sequence (by)neny in L, aV (A by) = A (aVby,).
neN neN
PROPOSITION 1.7. If x, <y for all n in N in a D(X;) frame L, then
V z, <yinL.
neN
DEFINITION 1.8. A nucleus k on a frame L is a map k : L — L such
that for any a, b in L,
(1) a < k(a)
(2) kok(a)=k(a)
(3) k(a Ab) =k(a) Ak(b)

For a nucleus k on a frame L, Ly = Fix(k) = {x € L | k(z) = z} is
a frame, the corestriction ko : L — Fix(k) of k is an onto frame homo-
morphism and Ly is called a sublocale of L.

For any a in L, consider the nucleus ¢, : L. — L defined by ¢,(z) =
aV z. Then Fix(c,) =7 a, which is called a closed sublocale of L.

Furthermore, the map 7 : L — L defined by j(a) = a* is also a
nucleus and the sublocale Fix(j) = {a € L | a™ = a} is a smallest dense
sublocale of L. and the corresponding onto frame homomorphism will be
denoted by jg : L — L.

2. Almost Lindelof frames

In this section, we introduce and study almost Lindelof frames and
almost Lindeldfications of frames.

DEFINITION 2.1. A subset D of a poset L is said to be :

(1) countably down directed if every countable subset of D has a lower
bound in D.
(2) a o-filter if it is a countably down directed filter.
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We note that a filter on p(X) is a d-filter if and only if it is closed
under countable intersections. More generally, a filter F in a complete
lattice L is a d-filter if and only if it is closed under countable meets.
Thus the intersection of a non-empty family of J-filters on a complete
lattice L is again a d-filter on L. Moreover, if F is a d-filter on L, then

for any sequence (z,)nen, A zx # 0, i.e., F has the countable meet
kEN
property.

In the following, we will assume that L is a complete lattice.

REMARK. (1) Let A be a subset of L. Then there is a d-filter F
with A C F' if and only if A has the countable meet property.
Indeed, the condition is clearly necessary. For the converse, let
F = {a € L | there is a countable subset C' of A with \ C' < a},
then F' is clearly a d-filter containing A, which will be called a
0-filter generated by A.

(2) Let (F,).er be a non-empty family of §-filters on L. Then there is
a d-filter F' on L with F' O |JF, if and only if for any countable
subset J of I and a, € F, (v € J), Na, # 0. In particular, let

1€J
be a d-filter on L and a in L. Then there is a é-filter G on L with

G O F and a € G if and only if for any d € F, d N a # 0.

DEFINITION 2.2. A frame L is said to be an almost Lindelof frame if
for any subset S of L with \/ S = e, there is a countable subset A of S
such that (\/ A)* =0 .

EXAMPLE 2.3. (1) An almost compact frame is an almost Lindelof

frame.

(2) A Lindelof frame is an almost Lindelof frame.

(3) For a topological space (X, (X)), Q(X) is an almost Lindelof frame
if and only if (X, (X)) is an almost Lindel6f space.

(4) The regular open set lattice O,¢4(R) on the real line is non-spatial
since it is an atomless Boolean algebra([7]). Thus O,.,(R) is a
non-spatial almost Lindelof frame.

THEOREM 2.4. Let L be a frame. Then the following are equivalent :
1) L is an almost Lindelof frame.
2) For any ¢-filter F' in L, \/[{z*|z € F} #e.

Proof. 1) = 2) Suppose not, then there is a o-filter F' in L such that
V{z*|lx € F} = e. By 1), there is a countable subset G of F' such
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that (V{y*ly € G})* = 0. Since (V{y*ly € G})* = AN{y™|y € G} and
y < y™* for any y in L, A\ G = 0, which is a contradiction to the fact

that F'is a o-filter.

2) = 1) Suppose that there is a subset S of L such that \/ S = e but
for any countable subset A of S, (\/ A)* # 0. Thus {z*|x € S} has the
countable meet property and hence generates a J-filter, say U. Then
U = {y € L | there is a countable subset A of S such that A{z*|z €
ay <y}

Using « < 2™ for any x in L, one has e = \/ S < \/{z** | z € S} <
V{u* | v € U}, because {z* | z € S} C U. Thus \/{u" | ue U} =ce,
which is a contradiction to 2). O

PROPOSITION 2.5. Let f: L — M be a dense frame homomorphism.
If M is an almost Lindelof frame, then so is L

Proof. Suppose not, then there is a d-filter F' in L such that \/{z*|z €
F}=e Let G={ye M| f(x) <y for some z € F}. Then clearly G
is an upper set. Take any sequence (y,)nen in G, there is x,, in F' such

that f(z,) < yp. Thus A zoisin Fand A yo > A flza) > FCA )

neN neN neN nenN
; hence A v, isin G. Since f is dense, 0 ¢ G. Thus G is a Jd-filter on M.
neN
Since zAx* = 0 in L implies that 0 = f(0) = f(x)Af(z*), f(z*) < f(z)*.
Now, we have ey = f(ez) = f(V{z'l € F}) = V{f(z") | = € F}
<V{f(@)" |z e F} <\{y* |y € G}, for {f(x) |z € F} C G. Thus
ev = V{y* | y € G}. But this contradicts to the fact that M is an
almost Lindelof frame. ]

COROLLARY 2.6. If L is a frame and L,, = {x € L | x = ™} is an
almost Lindelof frame, then so is L.

Proof. Since jy : L — L, is a dense onto frame homomorphism, it is
immediate from the above proposition. Il

ProrosiTiON 2.7. If L is an almost Lindelof frame and a is in L,
then | a* = L4~ is also an almost Lindelof frame.

Proof. Take any nonempty subset S of L+) =T a* with \/Ta* S =e.
Since V/;,. S = V1, S, there is a countable subset T of S with (\/ T)* = 0.
If T = ¢, then e = 0, that is, L is singleton ; hence we may assume that
T # ¢. For any y in T a* with y A (\/ T) = a*, the bottom element of
Ta*,0=aAa* =aAyA(\/ T)implies that aAy < (\/ T)* = 0 and hence
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aNy=0,ie y < a*. Thus y = a*. Therefore the pseudocomplement
of \/ T in 1 a* is a*. So Le(a+) is an almost Lindelof frame. O

ExXAMPLE 2.8. Let X be an uncountable set and p an element of X.
Let QX) = {UC X | U= ¢orp € U}. Then (X,Q(X)) is not a
Lindelof space and hence Q(X) is not a Lindeldf frame. But (X, (X))
is almost compact, for {p} is an open dense subset of X. Thus Q(X) is
an almost Lindelof frame.

PROPOSITION 2.9. Let L be a regular D(X;) frame. Then L is a
Lindelof frame if and only if L is an almost Lindelof frame.

Proof. The condition is clearly necessary. For the converse, take any
subset S of L with \/S =e and let Wy = {z € L | < s} for any s in S.
Since L is regular, \/ Wy =s;e=\VS =V (VW,) = V(JWs). Since

seS ses
L is an almost Lindelof frame, there is a countable subset F of [ J W

ses
such that (\/F)* = 0. Thus for any y in F, there is s, in S such that

y < sy ; hence there is ¢, in L such that y Ac, = 0 and s, V¢, = e. Since

(VE)A(Mey [y € F}) = V(A (Mey |y € F})) < V(zAe) =0,

zeF
MNMey, |y € F} < (VF)* = 0 so that A{c, | y € F} = 0. Since L is
D<N1)7

VisylyeFy =V{sy ly e F}v(Ney lyeFh) = AdevV({{sylye

zeF
FH} > Ade.vs.}=e.
zeF
Therefore \/{s, | y € F} = e and {s, | y € F} is a countable subset of
S. In all, LL is a Lindelof frame. O

In the following, we will construct almost Lindelofication of a frame
by a certain simple extension of a frame.

NoTATION 2.10. Let L be a frame and X the set of all o-filters F
such that \/{z* | * € F} = e. Then the subframe sxL = {(x,X) €
Lx p(X) | for any F in 3,z € F} of L x p(X) is the simple extension of
L associated with X. Furthermore, for anyx € X, ¥, = {Fe ¥ |z € F}.
And s : sxLL — L defined by the restriction of the first projection is open,
dense and onto. (See [4] for the detail.)

Using the above notation, one has the following :

THEOREM 2.11. Let L be a frame and X the set of all -filters F such
that \/{z* | x € F} = e. Then sxL is an almost Lindel6f frame.
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Proof. Suppose that there is a d-filter G in sxL with \/{v* | v €
G} = (e,X). Since s is dense and onto, s(G) is a filter in L. For any
sequence (T, )nen in s(G), there is (z,, A,,) in G for some A,, € p(X) for
alln € N. Since G is a o-filter, there is (x, A) in G with (z,A) < (z,, A,)
for all n € N. Thus z < z, for all n € N and = € s(G). Therefore
s(G) is a d-filter. Since s is open, s preserves pseudocomplements. Thus
V{u* | u € s(G)} = e ; hence s(G) is in X. For any v = (x,A) in G,

(e, {s(G)}) Av* = (e, {s(G)}) A (27, 5p) = (27, {s(G)} N Xye),
Since z = s(v) € s(G), 2* ¢ s(G) ; (e,{s(G)}) ANv* = (z*, ¢). Hence
(e, {s(G)}) = (e;{s(G)}) A (e, X) = (e, {s(G)}) A (V{v" [ v € G}) =
V (e, {s(G)}H)Av*) = (V{z* | (x,A) € G}), #). This is a contradiction.
veG

[

The above almost Lindelofication s : sxL. — L will be denoted by
0:0L — L.

The proof of the following can be found in [4] and [10].

PROPOSITION 2.12. Let X be a set of filters in a frame L, then an
element (x,3) in sx L is prime if and only if one of the following holds:

1) x is a prime element in L and ¥ = %,..
2) x =e and ¥ = X — {FY}, for some F € X.

Using the above and the exactly same arguments as those in [4] and
[10], we have the following :

THEOREM 2.13. A frame L is spatial if and only if 6L is spatial.
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