DOI QR코드

DOI QR Code

Acid-base Balance and Metabolic Acidosis in Neonates

신생아의 산-염기 균형과 대사성 산증

  • Lee, Byong-Sop (Division of Neonatology, Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center)
  • 이병섭 (울산대학교 의과대학 서울아산병원 신생아과)
  • Published : 2010.11.30

Abstract

Metabolic acidosis is commonly encountered issues in the management of critically ill neonates and especially of preterm infants during early neonatal days. In extremely premature infants, low glomerular filtration rate and immaturity of renal tubules to produce new bicarbonate causes renal bicarbonate loss. Higher intake of amino acids, relatively greater contribution of protein to the energy metabolism and mineralization process in growing bones are also responsible for higher acid load in premature infant than in adult. Despite widespread use of sodium bicarbonate in the management of severe metabolic acidosis, use of sodium bicarbonate in premature infants should be restricted to a reasonable but unproven exception such as ongoing renal loss. Despite concern about the low pH value (<7.2) which can compromise cellular metabolic function, no treatment guideline has been established regarding the management of metabolic acidosis in premature infants. Appropriately powered randomized controlled trials of base therapy to treat metabolic acidosis in critically ill newborn infants are demanding.

Keywords

References

  1. Adrogue HE, Adrogue HJ. Acid-base physiology. Respir Care 2001;46:328-41.
  2. Abelow B. Understanding acid-base. Baltimore: Williams & Wilkins, 1998.
  3. Rose BD, Post TW. Clinical physiology of acid-base electrolytes disorders. 5th ed. New York: McGraw-Hill, 2001.
  4. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F. Glomerular filtration rate reference values in very preterm infants. Pediatrics 2010;125:e1186-92. https://doi.org/10.1542/peds.2009-1426
  5. Day R, Franklin J. Renal carbonic anhydrase in premature and mature infants. Pediatrics 1951;7:182-5.
  6. Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 2002;14:175-82. https://doi.org/10.1097/00008480-200204000-00006
  7. Sato T, Takahashi N, Komatsu Y, Wada M, Matsunaga M, Ito K, et al. Urinary acidification in extremely low birth weight infants. Early Hum Dev 2002;70:15-24. https://doi.org/10.1016/S0378-3782(02)00042-7
  8. Gudinchet F, Schutz Y, Micheli JL, Stettler E, Jequier E. Metabolic cost of growth in very low-birth-weight infants. Pediatr Res 1982;16:1025-30. https://doi.org/10.1203/00006450-198212000-00012
  9. Low JA, Froese AF, Galbraith RS, Sauerbrei EE, McKinven JP, Karchmar EJ. The association of fetal and newborn metabolic acidosis with severe periventricular leukomalacia in the preterm newborn. Am J Obstet Gynecol 1990;162:977-81; discussion 81-2. https://doi.org/10.1016/0002-9378(90)91299-R
  10. Weir FJ, Ohlsson A, Myhr TL, Fong K, Ryan ML. A patent ductus arteriosus is associated with reduced middle cerebral artery blood flow velocity. Eur J Pediatr 1999;158:484-7. https://doi.org/10.1007/s004310051125
  11. Cooke RW. Factors associated with periventricular haemorrhage in very low birthweight infants. Arch Dis Child 1981;56:425-31. https://doi.org/10.1136/adc.56.6.425
  12. Goldstein RF, Thompson RJ Jr, Oehler JM, Brazy JE. Influence of acidosis, hypoxemia, and hypotension on neurodevelopmental outcome in very low birth weight infants. Pediatrics 1995;95:238-43.
  13. Aylward GP. Perinatal asphyxia: effects of biologic and environmental risks. Clin Perinatol 1993;20:433-49.
  14. Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Report of a Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Arch Dis Child 1992;67:1221-7. https://doi.org/10.1136/adc.67.10_Spec_No.1221
  15. Kaiser JR, Gauss CH, Williams DK. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res 2005;58:931-5. https://doi.org/10.1203/01.pdr.0000182180.80645.0c
  16. Wagerle LC, Kumar SP, Belik J, Delivoria-Papadopoulos M. Bloodbrain barrier to hydrogen ion during acute metabolic acidosis in piglets. J Appl Physiol 1988;65:776-81. https://doi.org/10.1152/jappl.1988.65.2.776
  17. Hsia CC. Respiratory function of hemoglobin. N Engl J Med 1998; 338:239-47. https://doi.org/10.1056/NEJM199801223380407
  18. Lorenz JM, Kleinman LI, Markarian K, Oliver M, Fernandez J. Serum anion gap in the differential diagnosis of metabolic acidosis in critically ill newborns. J Pediatr 1999;135:751-5. https://doi.org/10.1016/S0022-3476(99)70096-X
  19. Taeusch HW, Ballard RA, Gleason CA. Averys diseases of the newborn. 8th ed. Philadelphia: Elsevier Saunders, 2005.
  20. Dixon H, Hawkins K, Stephenson T. Comparison of albumin versus bicarbonate treatment for neonatal metabolic acidosis. Eur J Pediatr 1999;158:414-5. https://doi.org/10.1007/s004310051104
  21. van Alfen-van der Velden AA, Hopman JC, Klaessens JH, Feuth T, Sengers RC, Liem KD. Effects of rapid versus slow infusion of sodium bicarbonate on cerebral hemodynamics and oxygenation in preterm infants. Biol Neonate 2006;90:122-7. https://doi.org/10.1159/000092411
  22. Papile LA, Burstein J, Burstein R, Koffler H, Koops B. Relationship of intravenous sodium bicarbonate infusions and cerebral intraventricular hemorrhage. J Pediatr 1978;93:834-6. https://doi.org/10.1016/S0022-3476(78)81096-8
  23. Usher R. Reduction of mortality from respiratory distress syndrome of prematurity with early administration of intravenous glucose and sodium bicarbonate. Pediatrics 1963;32:966-75.
  24. Corbet AJ, Adams JM, Kenny JD, Kennedy J, Rudolph AJ. Controlled trial of bicarbonate therapy in high-risk premature newborn infants. J Pediatr 1977;91:771-6. https://doi.org/10.1016/S0022-3476(77)81039-1
  25. Levy MM. An evidence-based evaluation of the use of sodium bicarbonate during cardiopulmonary resuscitation. Crit Care Clin 1998;14:457-83. https://doi.org/10.1016/S0749-0704(05)70011-7
  26. Dybvik T, Strand T, Steen PA. Buffer therapy during out-of-hospital cardiopulmonary resuscitation. Resuscitation 1995;29:89-95. https://doi.org/10.1016/0300-9572(95)00850-S
  27. Levraut J, Giunti C, Ciebiera JP, de Sousa G, Ramhani R, Payan P, et al. Initial effect of sodium bicarbonate on intracellular pH depends on the extracellular nonbicarbonate buffering capacity. Crit Care Med 2001;29:1033-9. https://doi.org/10.1097/00003246-200105000-00032
  28. Maldonado FA, Weil MH, Tang W, Bisera J, Gazmuri RJ, Johnson B, et al. Myocardial hypercarbic acidosis reduces cardiac resuscitability. Anesthesiology 1993;78:343-52. https://doi.org/10.1097/00000542-199302000-00019
  29. Peters O, Ryan S, Matthew L, Cheng K, Lunn J. Randomised controlled trial of acetate in preterm neonates receiving parenteral nutrition. Arch Dis Child Fetal Neonatal Ed 1997;77:F12-5. https://doi.org/10.1136/fn.77.1.F12
  30. Morriss FH Jr, Brewer ED, Spedale SB, Riddle L, Temple DM, Caprioli RM, et al. Relationship of human milk pH during course of lactation to concentrations of citrate and fatty acids. Pediatrics 1986;78:458-64.

Cited by

  1. The Time When the Metabolic Compensation for Hypercapnia Begin to Occur in Very Low Birth Weight Infants vol.20, pp.1, 2010, https://doi.org/10.5385/nm.2013.20.1.42
  2. Impact of Postnatal Acidosis on Short Term Outcomes in Very Low Birth Weight Infants vol.24, pp.1, 2017, https://doi.org/10.5385/nm.2017.24.1.7