방글라데시의 지하수와 쌀의 비소오염 및 식물정화법

Arsenic Concentrations of Groundwater and Rice Grains in Bangladesh and Phytoremediation

  • 투고 : 2009.09.25
  • 심사 : 2009.12.23
  • 발행 : 2010.01.30

초록

방글라데시에서는 지하수에 대한 의존도가 증가함에 따라 지하수에 기인하는 비소오염이 점차 심각한 문제로 나타나고 있다. 비소는 토양, 자연수, 그리고 심지어 음용수에까지 포함되어 있지만, 비소에 대한 관리 규정이 없어서 최근까지 적절히 측정되지 않고 방치되어 왔다. 그러나 비소오염에 대한 피해가 증가하면서 비소 경감의 필요성이 강조되었다. 본 연구에서 조사된 23 개 지점에서 채집된 쌀의 비소 함량은 평균 0.34 mg/kg 이었으며 3 개 지점은 1.02~1.12 mg/kg 로서 기준치인 1.0 mg/kg을 초과하였다. 비소오염을 줄이는 경제적 방법으로서 식물을 이용한 정화법이 제시되고 있는데 Pteris vittata 라는 고사리는 비소를 잘 흡수하여 농축하는 것으로 알려져 있으며 본 연구에서 실험한 결과 비소농도 20 mg/kg의 토양에서 재배한 경우 지상부 식물조직의 비소함량이 16 mg/kg까지 농축되는 것으로 나타났다. 그러나 뿌리의 비소함량은 지상부의 약15% 정도로 낮은 것으로 나타나 지상부의 제거로서 비소를 제거할 수 있음을 보여주었다. 비소오염이 전국적으로 심각함에도 불구하고 정부의 노력은 광범위한 지역을 관리하기에 아직 충분치 않으므로 경제적이고 간단한 대책들이 필요하며 식물을 이용한 정화법이 하나의 대안이 될 수 있을 것이다.

While groundwater is the major source for drinking and irrigation purposes, arsenic (As) contamination of groundwater is a serious issue in Bangladesh. With a view to reduce As contamination in drinking water the guideline value recommended for Bangladesh is 0.05 mg/L. We assessed groundwater As in an As-affected Sadar Upazilla (small administrative unit) in the District (administrative unit) of Chapai Nabwabganj during 2006, where 50% hand tube well water were above the recommended limit (0.05 mg/L) during dry season. Almost 20% tube well waters were above the recommended limit during rainy season, perhaps due to the dilution of water table. The groundwater in Bangladesh contaminates surface soils and plants thereby As entering the food chain. In 2005, we examined the As levels in different rice varieties grown in different Districts of Bangladesh and the As concentrations in rice grain ranged from 0.07~1.12 mg/kg while the concentrations in 3 rice varieties were above the recommended limit (1 mg/kg rice grain) and the maximum concentration was 1.12 mg/kg rice grain in the rice variety BR 11. With few exceptions, the As content of rice grain in Bangladesh is not considered to be concentration of greater health concern as yet. We also observed enhanced root uptake, efficient root-to shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in a plant, ladder brake fern (Pteris vittata L.). But the phytoremediation technique might not be an appropriate tool to reduce the As calamity in the vast areas of Bangladesh. To mitigate the As problem of Bangladesh, better coordination among governmental agencies and many other organizations will be required to combat the disaster.

키워드

참고문헌

  1. Abedin, M. J., Cotter Howells, J., and Meharg. A. A. (2002a). Arsenic uptake and accumulation in rice (Oryza saliva L.) irrigated with contaminated water. Plant and Soil, 240(2), pp.311-319. https://doi.org/10.1023/A:1015792723288
  2. Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., and Cotter Howells, J. (2002b). Arsenic accumulation and metabolism in rice. Environmental Science and Technology. 36(5), pp. 962-968. https://doi.org/10.1021/es0101678
  3. Ali, M. A., Badruzzaman, A. B. M., Jalil, M. A., Hossain, M. D., Ahmed, M. F., Masud, A. A., Kamruzzam, M., and Rahman, M. A. (2003). Arsenic in plant-soil Environment in Bangladesh. Paper presented at the Fate of Arsenic in the Environment Conference, Dhaka, Bangladesh.
  4. APHA (American Public Health Association). (1998). Standard Methods for the Examination of Water and Wastewater. 20th edn. Washington, D.C.
  5. BAMWSP (Bangladesh Arsenic Mitigation Water Supply Project). (2006). Available: http://www.bamwsp.org/.
  6. BOS (British Goologic Survey) and DPHE (Department of Public Health Engineering). (2001). Arsenic Contamination of Groundwater in Bangladesh. In: Kinniburgh, D. G. & Smedley, P. L., eds. (British Geologic Survey, Keyworth. UK), Vols. 1-4, British Geologic Survey Report WC 0019.
  7. Das, H. K. (2000). Bangladeshe Arsenic: Bhayabahata O Sambhaabbya Protikar. Bangla Academy, Dhaka. pp. 1-218.
  8. Das, D. K., Chowdhury. D. A., Rahman, S., Obaidullah, Miah, M. U., Sengupta, P., and Islam, F. (2000). Arsenic contamination of soil and water and related biohazards in Bangladesh. Fate of Arsenic in the Environment, pp. 138-145.
  9. DPHE-BGS. (2000). Groundwater studies for arsenic contamination in Bangladesh. Department of Public Health Engineering and British Geological Survey, pp. 11-49.
  10. Duxbury, J. M., Mayer, A. B., Lauren, J. G., and Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A, Toxic/hazardous substances and environmental engineering. 38, pp. 61-69. https://doi.org/10.1081/ESE-120016881
  11. Harvey, C. F., Swartz., C. H., Badruuaman, A. B. M., Keon-Blute. N., Yu. W., and Ali, M. A., Jay, J., Beckie, E., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., and Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, pp. 1602-1606. https://doi.org/10.1126/science.1076978
  12. Hossain, M., Lewis, D., Bose, M., and Chowdhury, A. (2003). Rice Research: technological progress and impacts on the poor: the Bangladesh case (summary report). International Food Policy Research Institute.
  13. Jahiruddin, M. M. R., Islam, A. L., Shah, S., Islam, M., and Ghani, A. (2004). Effects of arsenic contamination on yield and arsenic accumulation in crops. In: Shah Mal, et aI., editor. Workshop on Arsenicc in the Water-Soil-Crop Systems, 22 July 2004. Bangladesh Rice Research Institute, Gazipur, Bangladesh, 147, pp. 39-52.
  14. Jasim Uddin Ahmad (Ed.). (2003). National Documentation on Problems of Arsenic and Farakka: A Report. International Farakka Committee, Inc., New York 11423, USA.
  15. Konstantina Tyrovola, Nikolas Nikolaidis, P., Nikolas Veranis, Nikolas Kallithrakas-Konthos and Pavlos Koulouridakis, E.(2006). Arsenic removal from geothermal waters with zerovalent iron-effect of temperature, phosphate and nitrate. Water Research, 40, pp. 2375-2386. https://doi.org/10.1016/j.watres.2006.04.006
  16. Ma, L. Q., Komar, K. M., Zhang Tu, C., Cai, Y., and Kennellery, E. D. (2001). A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to removal arsenic from contaminated soils. Nature, 409, pp. 519-582.
  17. MandaI, B. K. and Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, pp. 201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
  18. McArthur, J. M., Ravenscroft, P., Safiullah, S., and Thirlwall, M. F. (2001). Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37, pp. 109-117. https://doi.org/10.1029/2000WR900270
  19. Meharg, A. A. and Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytologist, 154, pp. 29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x
  20. Meharg, A. A. and Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption, Environmental Science and Technology, 37(2), pp. 229-234. https://doi.org/10.1021/es0259842
  21. Mitchell, P. and Barr, D. (1995). The nature and significance of public exposure to arsenic: a reveir of its relevance to South west England. Environmental Geochemistry and Health, 17, pp. 57-82. https://doi.org/10.1007/BF00146709
  22. NFC (National Food Security). (1993). Austalian Food Standard Code. Australian Government Public Service, Canberra, Australia.
  23. Nesbitt, H. W., Muir, I. J., and Pratt, A. R. (1995). Oxidation by arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochim Cosmochim Acta, 59, pp. 1113-1186. https://doi.org/10.1016/0016-7037(95)00028-X
  24. Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., and Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, pp. 338. https://doi.org/10.1038/26387
  25. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., and Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, pp. 403-413. https://doi.org/10.1016/S0883-2927(99)00086-4
  26. Nriagu, J. O. and Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, pp. 134-139. https://doi.org/10.1038/333134a0
  27. Rahman, M. M., Hassan, M. Q., Islam, M. S., and Shamsad, S. Z. K. M. (2000). Environmental impact assessment on water quality deterioration caused by the decreased Ganges outflow and saline water intrusion in south-western Bangladesh. Environmental Geology, 40, pp. 31-40. https://doi.org/10.1007/s002540000152
  28. Ravenscroft, P., McArthur, J. M., and Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Chappel, W. R., Abernathy, C. O., Calderon, R. editors. Arsenic Exposure and Health Effects IV, Oxford; Elsevier Science Ltd., pp. 53-78.
  29. Schoof, R. A., Yost, L. J., Eickhoff, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., and Menzel, D. B. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8). pp. 839-846. https://doi.org/10.1016/S0278-6915(99)00073-3
  30. Sheppard, S. C. (1992). Summary of phytotoxic levels of soil arsenic. Water, Air. Soil Pollution, 64, pp. 539-550. https://doi.org/10.1007/BF00483364
  31. Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the resource, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, pp. 511-568.
  32. Smith, A. H. (1998). Technical report. Assignment Report, WHO Project BANCWS 001, June 1998 (available on the Internet at http://socrates.berkeley.edu/~asrg/).
  33. Smith, A. H., Lingas, E. O., and Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin in the World Health Organization, 78(9), pp. 1093-1103.
  34. Stollenwerk, K. G. (2003). Geochemical processes controlling transport of arsenic in groundwater. A review of adsorption. In: A. H. Welch and K. G. Stollenwerk (eds.), Arsenic in groundwatcr: geochemistry and occurrence. Massachusetts, Kluwer. pp. 67-100.
  35. Strawn, D., Doner, H., Zavarin, M., and McHugo, S. (2002). Microscale investigation inlo the geochemistry of arsenic, selenium and iron in soil developed in pyrite shale materials. Geoderma, 108, pp. 237-257. https://doi.org/10.1016/S0016-7061(02)00133-7
  36. Tu, C. and Ma, L. Q. (2002). Effects of arsenic concentrations and forms of arsenic uptake by the hyperaccumulator Ladder Brake. Journal of Environmental Quality, 31 , pp. 641-647. https://doi.org/10.2134/jeq2002.0641
  37. Tu, C., Ma, L. Q., and Bondada, B. (2002). Arsenic accumulation in the hyperaccumulalor Chinese Brake and its utilzation potential for phytoremediation. Journal of Environmental Quality, 31, pp. 1671-1675. https://doi.org/10.2134/jeq2002.1671
  38. UNICEF. (1999). Arsenic Mitigation in Bangladesh, Media Brief. United Nation's Children's Fund (UNICEF), New York.
  39. van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., Steckler, M., Gelman, A., Small, C., Ahsan, H .. Graziano, J. H., Hussain, I., and Ahmed, K. M. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 $km^{2}$ area of Bangladesh. Water Resources Research. 39 (HWC 3), pp. 1-16.
  40. Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., and McGrath, S. P. (2002). Mechanisms of arsenic accumulation in Pleris viltala. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, pp. 1552-1561. https://doi.org/10.1104/pp.008185
  41. Warren, G. P., Alloway, B. J., Lepp, N. W., Singh, B., Bochereau, F. J. M., and Penny, C. (2003). Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Science of the Total Environment, 311, pp. 19-33. https://doi.org/10.1016/S0048-9697(03)00096-2
  42. WHO. (2000). Bulletin of the World Health Organization, 9. pp. 1093-1103.