Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction

액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향

  • 권영철 (한국사이버대학교 소방방재학과)
  • Received : 2010.08.31
  • Accepted : 2010.10.14
  • Published : 2010.11.01

Abstract

The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

액상화에 의해 발생되는 피해의 상당 부분은 반복전단과정에서 발생한 과잉간극수압이 소산되면서 지표에 나타나는 침하에서 유발된다. 그러나 지반은 매우 복잡한 구조로 되어 있기 때문에 침하는 균등하게 발생하지 않으며 대부분 부등 침하의 형태로 발생되게 된다. 일반적으로는 이러한 잔류전단변형률이 없는 상태에서 재압밀을 수행하지만 현실적으로는 잔류전단변형이 남아있는 것이 자연스러운 현상이라는 인식과 함께 다양한 다이레이턴시 특성하에서 발생되는 액상화 후 재압밀에 대한 고찰이 거의 이루어지지 않았다는 점에 주목하여 본 연구에서는 잔류전단변형률이 액상화 후 재압밀과정에 미치는 영향을 검토하였다. 이를 위하여 변형률 제어에 기반을 둔 시험장치와 간극수의 배수를 정밀 제어할 수 있는 체적변형률 제어장치를 이용하여 세립분을 포함하고 있지 않은 표준사와 세립분을 포함한 풍화토에 대한 일련의 삼축압축시험을 실시하였고 그 결과를 고찰하였다. 결과 표준사의 경우 에는 상대적으로 잔류전단변형률이 액상화 후 체적압축특성에 미치는 영향이 작았으나 풍화토의 경우에는 유효응력-체적변형률 관계곡선이 잔류전단변형률이 클수록 하방에 위치하였으며 곡선의 형상에도 영향을 미치고 있었고 대체적으로 응력 수준이 낮은 배수 초기에 체적변형률이 급증하며 유효응력 증가에도 거의 체적변형은 일어나지 않고 있다. 액상화에 의한 침투유동파괴가 낮은 응력 수준에서 발생된다는 점을 고려하면 이러한 관계 곡선의 형상은 매우 중요한 의미를 갖는다.

Keywords

References

  1. 三上武子, 澤田俊一, 竹島康人, 中山栄樹, 池田大祐(2002), 液状化後の体積ひずみに及ぼす要因, 土木学会年次学術講演会講演概要集 第3部, 土木学会, Vol. 57, pp. 1161-1162.
  2. Collins, I. F. and Muhunthan, B.(2003), On the Relationship between Stress-Dilatancy, Anisotropy, and Plastic Dissipation for Granular Materials, Geotechnique, Vol. 53, No. 7, pp. 611-618. https://doi.org/10.1680/geot.2003.53.7.611
  3. Finn, W. D. L.(1998), Post Liquefaction Deformation of Embankments and Effects on Restraining Piles, Transportation Research Record, No. 1633, pp. 19-25.
  4. Ishihara, K., Yasuda, S. and Yoshida, Y.(1990), Liquefaction- Induced Flow Failure of Embankments and Residual Strength of Silty Sands, Soils and Foundations, Vol. 30, No. 3, pp. 69-80. https://doi.org/10.3208/sandf1972.30.3_69
  5. Kazama, M., Yamaguchi, A. and Yanagisawa, E.(2000), Liquefaction Resistance from a Ductility Viewpoint, Soils and Foundations, Vol. 40, No. 6, pp. 47-60. https://doi.org/10.3208/sandf.40.6_47
  6. Lee, K. L. and Albaisa, A.(1974), Earthquake Induced Settlement in Saturated Sands, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 100, No. GT4, pp. 387-405.
  7. Nagase, H., and Ishihara, K.(1988), Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes, Soils and Foundations, Vol. 28, No. 1, pp. 65-76. https://doi.org/10.3208/sandf1972.28.65
  8. Seed, H. B., Idriss, I. M.(1971), Simplified Procedure for Evaluating Soil Liquefaction Potential, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
  9. Seed, H. B., Idriss, I. M., Arango, I.(1983), Evaluation of Liquefaction Potential Using Field Performance Data, Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. 3, pp. 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
  10. Shamoto, Y., Zhanga, J. and Tokimatsu, K.(1998), New Charts for Predicting Large Residual Post-Liquefaction Ground Deformation, Soil Dynamics and Earthquake Engineering, Vol. 17, pp. 427-438. https://doi.org/10.1016/S0267-7261(98)00011-6
  11. Tatsuoka, F., Sasaki, T. and Yamada, S.(1984), Settlement in Saturated Sand Induced by Cyclic Undrained Simple Shear, Proceedings of 8th World Conference on Earthquake Engineering, Vol. 3, pp. 95-102.
  12. Tokimatsu, K. and Seed, H. B.(1987), Evaluation of Settlements in Sand Due to Earthquake Shaking, Journal of Geotechnical Engineering Division, ASCE, Vol. 113, No. 8, pp. 861-878. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:8(861)
  13. Tsukamoto, Y., Ishihara, K. and Sawada, S.(2004), Settlement of Silty Sand Deposits Following Liquefaction During Earthquakes, Soils and Foundations, Vol. 44, No. 5, pp. 135-148. https://doi.org/10.3208/sandf.44.5_135