Evaluation for Contents of Contaminants and Leaching Characteristics of Bottom Ash

바텀애쉬의 유해물질 함량 측정 및 용출특성 평가연구

  • 고태훈 (한국철도기술연구원 신소재틸팅열차시스템연구단) ;
  • 이성진 (한국철도기술연구원 철도구조연구실) ;
  • 신민호 (한국철도기술연구원 철도구조연구실) ;
  • 김병석 (부경대학교 환경해양대학 환경공학과 대학원) ;
  • 이제근 (부경대학교 환경해양대학 환경공학과) ;
  • 이태윤 (부경대학교 환경해양대학 환경공학과)
  • Received : 2010.03.17
  • Accepted : 2010.04.28
  • Published : 2010.06.01

Abstract

In this study, we tried to determine any detrimental effects on water quality when bottom ash obtained from a coal-fired power plant intended to be used as a fill material in construction sites. Physical-chemical properties of bottom ash were determined using proximate analysis, elemental analysis, XRD, and XRF. Classification of bottom ash as a waste material and soil contamination due to the use of bottom ash were performed by Korea waste standard leaching test and soil toxicity test, respectively. Results of leaching tests were compared to the regulations for water quality and groundwater quality and no harmful effects on water quality were found. Most of heavy metals in leachate were below detection limits but trace amount of $Cr^{6+}$ was found. However, concentration of $Cr^{6+}$ was below the regulation criteria. Column leaching tests indicated that concentrations of Pb and Zn were slightly higher than regulations but below regulations within 1 PVE, but concentrations of sulfate were 10 times higher than regulation and thus, the required time to reach regulation was almost 8 PVE.

본 연구에서는 화력발전소에서 발생한 바텀애쉬를 성토재로 사용하기 전 환경에 미치는 영향을 평가하고자 하였다. 바텀애쉬에 대한 기본 물성치는 공업분석, 원소분석, XRD, XRF를 통해 구하였고, 폐기물 용출실험, 토양오염 공정실험을 통해 바텀애쉬에 대한 폐기물 분류 및 토양오염 가능성을 평가하였다. 위 용출실험 결과는 국내 수질환경기준 및 지하수 수질기준과 비교하였고 수질오염의 가능성은 없는 것으로 평가되었다. 측정된 대부분의 중금속은 검출한도 이하였으며 $Cr^{6+}$의 경우 미량이 검출되었으나 기준치 이하였다. 컬럼실험에서는 Pb, Zn 및 황산염이 기준치를 초과하였으나, Pb과 Zn은 1 PVE 전에 모두 기준치 이하로 감소하였고 황산염은 기준치 이하로 감소하는데 최대 8 PVE의 시간이 소요되었다. 중금속의 경우 대부분이 기준치 이하이므로 문제가 없으나 황산염은 기준치를 10배 정도 초과하므로 사용에 주의를 요한다.

Keywords

Acknowledgement

Supported by : 기상청

References

  1. Andrade, L. B., Rocha, J. C. and Cheriaf, M.(2009), Influence of Coal Bottom Ash as Fine Aggregate on Fresh Properties of Concrete, Construction and Building Materials, Vol. 23, No. 2, pp. 609-614. https://doi.org/10.1016/j.conbuildmat.2008.05.003
  2. Bin-Shafique, S., Benson, C. H., Edil, T. B. and Hwang, K. (2006), Leachate Concentrations from Water Leach and Column Tests on Fly Ash-Stabilized Soils, Environmental Engineering Science, Vol. 23, No. 1, pp. 53-67. https://doi.org/10.1089/ees.2006.23.53
  3. Cheriaf, M., Rocha, J. and Pera, J.(1999), Pozzolanic Properties of Pulverized Coal Combustion Bottom Ash, Cement and Concrete Research, Vol. 29, No. 9, pp. 1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
  4. Churchill, E. V. and Amirkhanian, S. N.(1999), Coal Ash Utilization in Asphalt Concrete Mixtures, Journal of Materials in Civil Engineering, Vol. 11, No. 4, pp. 295-301. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(295)
  5. Fytianos, K. and Schroder, H.(1997), Determination of Polychlorinated Dibenzodioxins and Dibenzofurans in Fly Ash, Chromatographia, Vol. 46, No. 4, pp. 280-284. https://doi.org/10.1007/BF02496319
  6. Fytianos, K., Tsaniklidi, E. and Voudrias, E.(1998), Leachability of Heavy Metals in Greek Fly Ash from Coal Combustion, Environment International, Vol. 24, No. 4, pp. 477-486. https://doi.org/10.1016/S0160-4120(98)00027-0
  7. Guidelines for Drinking Water Quality(1993), World Health Organization(WHO), Geneva, Switzerland.
  8. Hansen, Y., Notten, P. and Petrie, J.(2002), The Environmental Impact of Ash Management in Coal-Based Power Generation, Applied Geochemistry, Vol. 17, No. 8, pp. 1131-1141. https://doi.org/10.1016/S0883-2927(02)00013-6
  9. Kayabali, K. and Bulus, G.(2000), The Usability of Bottom Ash as an Engineering Material when Amended with Different Matrices, Engineering Geology, Vol. 56, No. 3-4, pp. 293-303. https://doi.org/10.1016/S0013-7952(99)00097-6
  10. Kim, B. and Prezzi, M.(2008), Compaction Characteristics and Corrosivity of Indiana class-F Fly and Bottom Ash Mixtures, Construction and Building Materials, Vol. 22, No. 4, pp. 694-702. https://doi.org/10.1016/j.conbuildmat.2006.09.007
  11. Korea Ministry of Environment(KMOE)(2002), Drinking Water Management Law(in Korean).
  12. Korea Ministry of Environment(KMOE)(2004), Waste Management Act.
  13. Korea Ministry of Environment(KMOE)(2005), Soil Environmental Conservation Act.
  14. Kurama, H. and Kaya, M.(2008), Usage of Coal Combustion Bottom Ash in Concrete Mixture, Construction and Building Materials, Vol. 22, No. 9, pp. 1922-1928. https://doi.org/10.1016/j.conbuildmat.2007.07.008
  15. Kurama, H., Topcu, I. B. and Karakurt, C.(2009), Properties of the Autoclaved Aerated Concrete Produced from Coal Bottom Ash, Jouranl of Materials Processing Technology, Vol. 209, No. 2, pp. 767-773. https://doi.org/10.1016/j.jmatprotec.2008.02.044
  16. Lee, T., Benson, C. and Eykholt, G.(2004), Waste Green Sands as Reactive Media for Groundwater Contaminated with Trichloroethylene(TCE), Journal of Hazardous Materials, Vol. B109, No. 3, pp. 25-36.
  17. Park, S., Jang, Y., Lee, J. and Lee, B.(2009), An Experimental Study on the Hazard Assessment and Mechanical Properties of Porous Concrete Utilizing Coal Bottom Ash Coarse Aggregate in Korea, Journal of Hazardous Materials, Vol. 166, No. 1, pp. 348-355. https://doi.org/10.1016/j.jhazmat.2008.11.054
  18. Shah, P., Strezov, V., Prince, K. and Nelson, P.(2008), Speciation of As, Cr, Se and Hg under Coal Fired Power Station Conditions, FUEL, Vol. 87, No. 10-11, pp. 1859-1869. https://doi.org/10.1016/j.fuel.2007.12.001
  19. Skodras, G., Grammelis, P., Prokopidou, M., Kakaras, E. and Sakellaropoulos, G.(2009), Chemical Leaching and Toxicity Characteristics of CFB Combustion Residues, FUEL, Vol. 88, No. 3, pp. 1201-1209. https://doi.org/10.1016/j.fuel.2007.06.009
  20. Trifunovic, P. D., Marinkovic, S. R., Tokalic, R. D. and Matijasevic, S. D.(2010), The Effect of the Content of Unburned Carbon in Bottom Ash on its Applicability for Road Construction, Thermochimica Acta, Vol. 498, No. 1-2, pp. 1-6. https://doi.org/10.1016/j.tca.2009.10.022
  21. U. S. Environmental Protection Agency(2002), Office of Water, Edition of the Drinking Water Regulations and Health Advisories.
  22. U.S. EPA Method 3051A, Microwave Assisted Acid Digestion of sediments, sludges, soils, and oils, Test Methods for Valuating Solid Waste, Physical/Chemical Methods, SW-846, 3rd ed., Environmental Protection Agency, Washington, DC, 1994.
  23. Vassilev, S. V., Vassileva, C. G., Karayigit, A. I., Bulut, Y., Alastuey, A., and Querol, X.(2005), Phase-mineral and Chemical Composition of Composite Samples from Feed Coals, Bottom Ashes and Fly Ashes at the Soma Power Station, Turkey, International Journal of Coal Geology, Vol. 61, No. 1-2, pp. 35-63. https://doi.org/10.1016/j.coal.2004.06.004
  24. Wang, W., Qin, Y., Song, D. and Wang, K.(2008), Column Leaching of Coal and Its Combustion Residues, International Journal of Coal Geology, Vol. 75, No. 2, pp. 81-87. https://doi.org/10.1016/j.coal.2008.02.004
  25. Wang, Y., Ren, D. and Zhao, F.(1999), Comparative Leaching Experiments for Trace Elements in Raw Coal, Laboratory Ash, Fly ash and Bottom ash, International Jornal of Coal Geology, Vol. 40, No. 2-3, pp. 103-108. https://doi.org/10.1016/S0166-5162(98)00062-7