상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors

  • 손성열 (한국과학기술원 생명화학공학과 에너지환경연구센터) ;
  • 고강석 (한국과학기술원 생명화학공학과 에너지환경연구센터) ;
  • 김상돈 (한국과학기술원 생명화학공학과 에너지환경연구센터)
  • Son, Sung Real (Department of Chemical and Biomolecular Engineering, Energy and Environment Research Center Korea Advanced Institute of Science and Technology) ;
  • Go, Kang Seok (Department of Chemical and Biomolecular Engineering, Energy and Environment Research Center Korea Advanced Institute of Science and Technology) ;
  • Kim, Sang Done (Department of Chemical and Biomolecular Engineering, Energy and Environment Research Center Korea Advanced Institute of Science and Technology)
  • 투고 : 2009.11.10
  • 심사 : 2009.12.08
  • 발행 : 2010.04.30

초록

매체 순환식 연소는 연소 공정 자체에서 질소 산화물 생성이나 부가적인 에너지 소비 없이 이산화탄소 분리가 이루어지는 신공정이다. 이 공정은 금속 산화물 입자가 두 개의 반응기를 순환하며 산화와 환원을 거치는 과정으로 구성되어 있다. 이 연구에서는 bentonite에 담지된 산화철 산소 공여 입자의 반응 속도 식을 shrinking core 모델을 통하여 수립하였다. 반응성 결과를 바탕으로 반응기 설계 기준인 고체 순환량과 입자 충전량을 도출하였다. 매체 순환식 연소 공정의 적용을 위하여 두 가지 형태의 연결된 유동층 즉, 상승관과 기포 유동층이 각각 한 개씩인 형태, 상승관 한 개와 기포 유동층이 두 개로 구성된 형태로 시스템을 설계하였다. 고체 순환량은 loop-seal을 통하여 $30kg/m^2s$ 정도까지 변화시켰다. 고체 순환량은 loop-seal의 기체 주입량이 증가할수록 증가하였으며 보조 기체를 주입하면 그 양이 더 증대되었다. 고체 순환량이 증가함에 따라 상승관 내부의 고체량은 증가하였다. 상승관으로부터 다른 반응기로의 기체 누출량은 1% 미만의 수준이었다.

The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

키워드

참고문헌

  1. Ishida, M., Zheng, D. and Akehata, T., "Evaluation of a Chemical-Looping Combustion Power-Generation System by Graphic Exergy Analysis," Energy, 12(2), 147-154(1987). https://doi.org/10.1016/0360-5442(87)90119-8
  2. Lyngfelt, A., Leckner, B. and Mattisson, T., "A Fluidized-bed Combustion Process with Inherent $CO_2$ Separation; Application of Chemical-Looping Combustion, " Chem. Eng. Sci., 56(10), 3101-3113(2001). https://doi.org/10.1016/S0009-2509(01)00007-0
  3. Mattisson, T., Järdnäs, A. and Lyngfelt, A., "Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical-Looping Combustion," Energy Fuels, 17(3), 643-651(2003). https://doi.org/10.1021/ef020151i
  4. Kronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A. and Hofbauer, H., "A Two-Compartment Fluidized Bed Reactor for $CO_2$ Capture by Chemical-Looping Combustion," Chem. Eng. Technol., 27(12), 1318-1326(2004). https://doi.org/10.1002/ceat.200402137
  5. Abad, A., Mattisson, T., Lyngfelt, A. and Rydén, M., "Chemical-Looping Combustion in a 300W Continuously Operating Reactor System Using a Manganese-Based Oxygen Carrier", Fuel, 85(9), 1174-1185(2006). https://doi.org/10.1016/j.fuel.2005.11.014
  6. Johansson, E., Mattisson, T., Lyngfelt, A. and Thunman, H., "A 300W Laboratory Reactor System for Chemical-Looping Combustion with Particle Circulation, " Fuel, 85(10-11), 1428-1438(2006). https://doi.org/10.1016/j.fuel.2006.01.010
  7. Ryden, M., Lyngfelt, A. and Mattisson, T., "Synthesis Gas Generation by Chemical-Looping Reforming in a Continuously Operating Laboratory Reactor," Fuel, 85(12-13), 1631-1641(2006). https://doi.org/10.1016/j.fuel.2006.02.004
  8. Abad, A., Mattisson, T., Lyngfelt, A. and Johansson, M., "The Use of Iron Oxide as Oxygen Carrier in a Chemical-Looping Reactor, " Fuel, 86(7-8), 1021-1035(2007). https://doi.org/10.1016/j.fuel.2006.09.021
  9. Johansson, E., Lyngfelt, A., Mattisson, T. and Johnson, F., "Gas Leakage Measurement in a Cold Model of an Interconnected Fluidized Bed for Chemical-Looping Combustion, " Powder Technol., 134(3), 210-217(2003). https://doi.org/10.1016/S0032-5910(03)00125-6
  10. Kronberger, B., Lyngfelt, A., Löffler, G. and Hofbauer, H., "Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with $CO_2$ Separation - Chemical-Looping Combustion," Ind. Eng. Chem. Res., 44(3), 546-556(2005). https://doi.org/10.1021/ie049670u
  11. Mattisson, T., Garcia-Labiano, F., Kronberger, B., Lyngfelt, A., Adanez, J. and Hofbauer, H., "Chemical-Looping Combustion Using Syngas as Fuel," Int. J. Greenhouse Gas Control, 1(2), 158-169 (2007). https://doi.org/10.1016/S1750-5836(07)00023-0
  12. Adanez, J., Gayan, P., Celaya, J., de Diego, L. F., Garcia-Labiano, F. and Abad, A., "Chemical Looping Combustion in a 10 kWth Prototype Using a $CuO/Al_2O_3$ Oxygen Carrier: Effect of Operating Conditions on Methane Comsbusion", Ind. Eng. Chem. Res., 45(16), 6075-6080(2006). https://doi.org/10.1021/ie060364l
  13. De Diego, L. F., Garcia-Labiano, F., Gayan, P., Celaya, J., Palacios, J. M. and Adanez, J., "Operation of a 10 kWth Chemical-Looping Combustor during 200 h with a $CuO-Al_2O_3$ Oxygen Carrier," Fuel, 86(7-8), 1036-1045(2007). https://doi.org/10.1016/j.fuel.2006.10.004
  14. Ryu, H. J., Jin, G. T. and Yi, C. K., "Demonstration of Inherent $CO_2$ Separation and No $NO_x$ Emission in a 50 kW Chemical-Looping Combustor: Continuous Reduction and Oxidation Experiment," Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, September 5-9, 1907-1910(2004).
  15. Son, S. R. and Kim, S. D., "Chemical-Looping Combustion with NiO and $Fe_2O_3$ in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops," Ind. Eng. Chem. Res., 45(8), 2689-2696(2006). https://doi.org/10.1021/ie050919x
  16. Ryu, H. J. and Jin, G. T., "Conceptual Design of 50 kW Thermal Chemical-Looping Combustor and Analysis of Variables," Energy Energy. J., 12(4), 289-301(2003).
  17. Abad, A., Adánez, J., García-Labiano, F., de Diego, L. F., Gayán, P. and Celaya, J., "Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-Based Oxygen Carriers in Chemical-Looping Combustion," Chem. Eng. Sci., 62(1-2), 533-549(2007). https://doi.org/10.1016/j.ces.2006.09.019
  18. Basu, P. and Fraser, S. A., Circulating Fluidized Bed Boilers: Design and Operations, Butterworth-Heinemann, MA, 229(1991).
  19. Basu, P., Luo, Z., Boyd, M., Cheng, L. and Cen, K., "An Experimental Investigation into a Loop Seal in a Circulating Fluidized Bed," Proceedings of 6th International Conference on Circulating Fluidized Beds, Wurzburg, Germany, August 22-27, 805-810 (1999).
  20. Levenspiel, O. Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, NY, 566(1999).
  21. Kasaoka, S., Skata, T. and Tong, C., "Kinetic Evaluation of Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), 160-175 (1985).
  22. Ryu, H. J., Bae, D. H., Han, K. H., Lee, S. Y., Jin, G. T. and Choi, J. H., "Oxidation and Reduction Characteristics of Oxygen Carrier Particles and Reaction Kinetics by Unreacted Core Model," Korean J. Chem. Eng., 18(6), 831-837(2001). https://doi.org/10.1007/BF02705604
  23. Garcia-Labiano, F., de Diego, L. F., Adanez, J., Abad, A. and Gayan, P., "Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion, " Ind. Eng. Chem. Res., 43(26), 8168-8177(2004). https://doi.org/10.1021/ie0493311
  24. Kim, S. W., Namkung, W. and Kim, S. D., "Solid Recycle Characteristics of Loop-Seals in a Circulating Fluidized Bed," Chem. Eng. Technol., 24(8), 843-849(2001). https://doi.org/10.1002/1521-4125(200108)24:8<843::AID-CEAT843>3.0.CO;2-D
  25. Kim, S. W. and Kim, S. D., "Effects of Particle Properties on Solids Recycle in Loop-seal of a Circulating Fluidized Bed," Powder Technol., 124(1-2), 76-84(2002). https://doi.org/10.1016/S0032-5910(01)00472-7
  26. Rhodes, M. J. and Laussman, P., "A Study of the Pressure Balance around the Loop of a CFB," Can. J. Chem. Eng., 70(4), 625-630(1992).