DOI QR코드

DOI QR Code

The Tribological and Lubrication Responses of a Cobalt-Chromium Femoral Head in Total Hip Arthroplasty

표면 윤활 물질에 의한 인공 고관절 코발트-크롬 대퇴골두의 마찰 및 윤활 반응

  • Park, Seong-Hun (Institute for Skeletal Aging & Department of Orthopedic Surgery, College of Medicine, Hallym University) ;
  • Truyen, Duong Cong (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Jae-Hoon (School of Mechanical Engineering, Pusan National University) ;
  • Cho, Youn-Ho (School of Mechanical Engineering, Pusan National University) ;
  • Park, Seung-Jae (Institute for Skeletal Aging & Department of Orthopedic Surgery, College of Medicine, Hallym University) ;
  • Park, Keun-Min (Institute for Skeletal Aging & Department of Orthopedic Surgery, College of Medicine, Hallym University) ;
  • Chang, Jun-Dong (Institute for Skeletal Aging & Department of Orthopedic Surgery, College of Medicine, Hallym University) ;
  • Lee, Sang-Soo (Institute for Skeletal Aging & Department of Orthopedic Surgery, College of Medicine, Hallym University)
  • 박성훈 (한림대학교 의과대학 정형외과학교실 골격노화연구소) ;
  • Duong Cong Truyen (부산대학교 기계공학부) ;
  • 이재훈 (부산대학교 기계공학부) ;
  • 조윤호 (부산대학교 기계공학부) ;
  • 박승재 (한림대학교 의과대학 정형외과학교실 골격노화연구소) ;
  • 박근민 (한림대학교 의과대학 정형외과학교실 골격노화연구소) ;
  • 장준동 (한림대학교 의과대학 정형외과학교실 골격노화연구소) ;
  • 이상수 (한림대학교 의과대학 정형외과학교실 골격노화연구소)
  • Published : 2010.09.30

Abstract

Purpose: This study aimed at investigating the role of albumin as a boundary lubricant in the lubrication of the Co-Cr femoral head of artificial hip implants by measuring the tribological parameters of the Co-Cr femoral head with Atomic Force Microscope (AFM) techniques. Materials and Methods: Samples were prepared from the main wear region of a Co-Cr femoral head from revision hip surgery. Two types of solutions were prepared as lubricants: PBS (Phosphate Buffered Saline) as a control solution and BSA (Bovine Serum Albumin) as a lubricant at concentrations of 10, 20, 30 and 40 mg/ml in PBS solution. Results: There were statistically significant differences in the frictional coefficients (${\mu}$) of a Co-Cr head between the PBS control and all the concentrations of BSA (10, 20, 30, 40 mg/ml) (P<0.001). Similarly, there were statistically significant differences for the ${\mu}$ between the BSA concentrations of 10, 20, 30 and 40 mg/m for all the cases except between the BSA of 30 and 40 mg/ml (P<0.01). Conclusion: There exists a maximum protein concentration of BSA to play a role as an effective boundary lubricant through adsorption on the surface of Co-Cr femoral head.

목적: 인공 고관절에서 알부민의 경계윤활제로서의 영향을 나노 단위 수준에서 확인하기 위하여, 코발트-크롬 대퇴골두를 AFM (Atomic Force Microscope) 을 사용하여 마찰 관련 지표의 변화를 분석하였다. 대상 및 방법: 환자의 코발트-크롬 대퇴골 삽입물의 마모된 부위로부터 실험 모델을 제작하였다. 사용된 윤활제는 대조용액으로 PBS (Phosphate Buffered Saline)가 사용되었으며 실험용액으로는 우혈청 알부민(BSA: Bovine Serum Albumin)가 사용되었다. 결과: 마찰계수 (${\mu}$)는 실험군과 대조군 사이의 마찰계수가 통계적으로 유의하였다(10 mg/ml, 20mg/ml, 30 mg/ml, 40 mg/ml BSA: P<0.001). 각 농도의 BSA 혼합 용액 사이에서도 통계적으로 유의한 마찰계수의 차이를 보였으며, 30 mg/ml와 40 mg/ml사이에서는 마찰계수의 차이가 유의하지 않았다. 결론: 코발트-크롬 대퇴골두의 표면에 흡착되어서 경계 윤활 작용의 효과를 극대화 시킬 수 있는 효과적인 단백질 농도가 존재한다.

Keywords

References

  1. Brockett C, Williams S, Jin Z, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater. 2007;81:508-15.
  2. Sedel L. Evolution of alumina-on-alumina implants: a review. Clin Orthop Relat Res. 2000;379:48-54. https://doi.org/10.1097/00003086-200010000-00008
  3. Bhushan B. Nanotribology, nanomechanics and nanomaterials characterization. Philos Transact A Math Phys Eng Sci. 2008;366:1351-81. https://doi.org/10.1098/rsta.2007.2163
  4. Park S, Costa KD, Ateshian GA. Microscale frictional response of bovine articular cartilage from atomic force microscopy. J Biomech. 2004;37:1679-87. https://doi.org/10.1016/j.jbiomech.2004.02.017
  5. Gispert MP, Serro AP, Colaco R, Saramago B. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants. Wear. 2006;260:149-58. https://doi.org/10.1016/j.wear.2004.12.040
  6. Scholes SC, Unsworth A, Hall RM, Scott R. The effects of material combination and lubricant on the friction of total hip prostheses. Wear. 2000;241:209-13. https://doi.org/10.1016/S0043-1648(00)00377-X
  7. Cho HJ, Wei WJ, Kao HC, Cheng CK. Wear behavior of UHMWPE sliding on artificial hip arthroplasty materials. Mater Chem Phys. 2004;88:9-16. https://doi.org/10.1016/j.matchemphys.2003.10.021
  8. Saikko V. Friction measurement in the biaxial rocking motion hip joint simulator. J. Tribol. 2009;131:011201. https://doi.org/10.1115/1.2991121
  9. Wang FC, Brockett C, Williams S, Udofia I, Fisher J, Jin ZM. Lubrication and friction prediction in metal-on-metal hip implants. Phys Med Biol. 2008;53:1277-93. https://doi.org/10.1088/0031-9155/53/5/008
  10. Duong CT, Nam JS, Seo EM, et al. Tribological property of the cobalt-chromium femoral head with different regions of wear in total hip arthroplasty. Proc Inst Mech Eng H. 2010;224:541-9.
  11. Arias DF, Marulanda DM, Baena AM, Devia A. Determination of friction coefficient on ZrN and TiN using lateral force microscopy (LFM). Wear. 2006;261:1232-6. https://doi.org/10.1016/j.wear.2006.03.007
  12. Smith AM, Chapman CE, Deslandes M, Langlais JS, Thibodeau MP. Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp Brain Res. 2002;144:211-23. https://doi.org/10.1007/s00221-002-1015-y
  13. Jiang H, Browning R, Fincher J, Gasbarro A, Jones S, Sue HJ. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins. Applied Surface Science. 2008;254:4494-9. https://doi.org/10.1016/j.apsusc.2008.01.067
  14. Menezes PL, Kishore, Kailas SV. Influence of roughness parameters on coefficient of friction under lubricated conditions. Sadhana. 2008;33:181-90. https://doi.org/10.1007/s12046-008-0011-8
  15. Menezes PL, Kishore, Kailas SV. On the effect of surface texture on friction and transfer layer formation-A study using Al and steel pair. Wear. 2008;265:1655-69. https://doi.org/10.1016/j.wear.2008.04.003
  16. Sedlacek M, Podgornik B, Vizintin J. Influence of surface preparation on roughness parameters, friction and wear. Wear. 2009;266:482-7. https://doi.org/10.1016/j.wear.2008.04.017
  17. Hwang DS, Kim YM, Lee CH. Alumina femoral head fracture in uncemented total hip arthroplasty with a ceramic sandwich cup. J Arthroplasty. 2007;22:468-71. https://doi.org/10.1016/j.arth.2006.05.020
  18. Teoh SH, Chan WH, Thampuran R. An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. J Biomech. 2002;35:323-30. https://doi.org/10.1016/S0021-9290(01)00215-9
  19. Brown SS, Clarke IC. A review of lubricant conditions for wear simulation in artificial hip joint replacements. Tribol Trans. 2006;49:72-8. https://doi.org/10.1080/05698190500519223
  20. Saikko V. Effect of lubricant protein concentration on the wear of ultra-high molecular weight polyethylene sliding against a CoCr counterface. J. Tribol. 2003;125:638-42. https://doi.org/10.1115/1.1537751
  21. Clarke IC, Chan FW, Essner A, et al. Multi-laboratory simulator studies on effects of serum proteins on PTFE cup wear. Wear. 2001;250:188-98. https://doi.org/10.1016/S0043-1648(01)00656-1
  22. Wang A, Essner A, Schmidig G. The effects of lubricant composition on in vitro wear testing of polymeric acetabular components. J Biomed Mater Res B Appl Biomater. 2004;68:45-52.
  23. O'Connor DT, Choi MG, Kwon SY, Paul Sung KL. New insight into the mechanism of hip prosthesis loosening: effect of titanium debris size on osteoblast function. J Orthop Res. 2004;22:229-36. https://doi.org/10.1016/S0736-0266(03)00167-0
  24. Heubergera MP, Widmera MR, Zobeley E, Glockshuber R, Spencera ND. Protein-mediated boundary lubrication in arthroplasty. Biomaterials. 2005;26:1165-73. https://doi.org/10.1016/j.biomaterials.2004.05.020