Oxidation of Organics Using a Direct Reaction of Peroxyl Radical and Ozone

페록시라디칼과 오존의 직접 반응을 이용한 유기물의 산화

  • 최승필 (강릉원주대학교 토목공학과) ;
  • 김종오 (강릉원주대학교 토목공학과)
  • Received : 2010.04.02
  • Accepted : 2010.07.10
  • Published : 2010.08.01

Abstract

This study was conducted to assess the applicability of pilot scale system and to evaluate the treatment efficiency on operational parameters such as humic acid concentration, initial pH and air flow rate on the ozone/peroxyl radical reaction system. The decolorization of ozone/peroxyl radical system was higher than that of only process. Removal efficiency of ozone/peroxyl radical system was generally increased with the increase of intial concentration of humic acid but decreased over the range of 30mg/L. Treatment efficiency of HA at acid pH was smaller compared to that of neutral or basic pH and increased with increasing the air flow rate from 1L/min to 3L/min. In pilot-scale test, average removal of TOC and $COD_{Cr}$ was about 70% and 60%, respectively and ozone/peroxyl radical reaction system was indicated a potential in water treatment application.

본 연구에서는 휴믹산 농도, 초기 pH 그리고 공기주입유량과 같은 실험인자가 오존/페록시라디칼 반응시스템의 처리효율에 미치는 영향과 연속 처리을 통한 시스템의 처리 특성을 실험적으로 검토하였다. 오존과 페록시라디칼을 조합한 시스템의 처리효율은 각각의 단독공정에 비해 더 높은 색도 제거효율을 나타내었다. 초기 휴믹산 농도가 증가할수록 처리효율이 증가했지만 초기 휴믹산 농도 30mg/L 이상에서는 오히려 처리효율이 감소한 결과를 나타냈고 초기 pH의 경우 산성영역에서 보다는 중성과 알카리성 영역에서 휴믹산 제거효율이 더 높았으며 공기주입유량이 증가할수록 시스템의 처리효율이 증가하였다. Pilot-scale 시스템을 실제 정수장 유입수에 적용시킨 결과, TOC와 $COD_{Cr}$에 대한 각각의 평균 제거율은 약 70%와 60%로 나타나 수중 난분해성 유기물 제거를 위한 적용가능성을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 강기훈, 신현상, 박희경(2000), 매립 연령에 따른 침출수 중에 존재하는 휴믹물질의 분광학적 특성 분석, 대한환경공학회지, Vol. 22, No. 6, pp. 1113-1126.
  2. 유해웅(2002), $TiO_2$ 광촉매를 이용한 Geosmin의 분해에 관한 연구, 석사학위논문, 경상대학교. p. 1.
  3. 이준재, 서정권, 홍지숙, 이정민(2004), 광촉매 현탁액을 이용한 Humic Acid 분해 효율 평가, 대한환경공학회지, Vol. 26, No. 6, pp. 719-725.
  4. 환경부(2004), 2004상수도 통계, http://www.kowata.or.kr/link/2005/2004상수도통계.zip.
  5. Agustina, T. E., Ang, H. M. and Vareek, V. K.(2005), A Review of Synergistic Effect of Photocatlalysis and Ozonation on Wastewater Treatment, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 6, No. 4, pp. 264-273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003
  6. Chemat, F., Teunissen, P. G. M., Chemat, S. and Bartels, P. V.(2002), Sono-Oxidation Treatment of Humic Substances in Drinking Water, Ultrasonic Sonochemistry, Vol. 8, No. 3, pp. 247-250.
  7. Domany, Z., Galambos, I., Vatai, G. and Bekassy-Molnar, E. (2002), Humic Substances Removal from Drinking Water by Membrane Filtration, Desalination, Vol. 145, No. 1-3, pp. 333-337. https://doi.org/10.1016/S0011-9164(02)00432-0
  8. Giri, R. R., Ozaki, H., Ishida, T., Takanami, R. and Taniguchi, S. (2007), Synergy of Ozonation and Photocatalysis to Mineralize Low Concentration 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution, Chemosphere, Vol. 66, No. 6, pp. 1610-1617. https://doi.org/10.1016/j.chemosphere.2006.08.007
  9. Hernandez-Alondo, M. D., Coronado, J. M., Javier Marira, A., Ssoria, J., Loddo, V. and Augugliaro, V.(2002), Ozone Enhanced Activity of Aqueous Titanium Dioxide Suspensions for Photocatalitic Oxidation of Free Cyanide Ions, Applied Catalysis B:Environmental, Vol. 39, No. 3, pp. 257-267. https://doi.org/10.1016/S0926-3373(02)00119-4
  10. Hoigne, J.(1998), Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes, in : O. Hutzinger (ED), The Handbook of Environmental Chemistry, Springer-Verlag, Berlin, Vol. 5, pp. 84-141.
  11. Katsumata, H., Kaneco, S., Matsuno, R., Itoh, K., Masuyama, K., Suzuki, T., Funasaka, K. and Ohta, K.(2003), Removal of Organic Polyelectrolytes and Their Metal Complexes by Adsorption onto Xonotlite, Chemosphere, Vol. 52, No. 5, pp. 909-915. https://doi.org/10.1016/S0045-6535(03)00285-6
  12. Kopf, P., Gilvert, E. and Eberle, S. H.(2000), $TiO_2$ Photocatalytic Oxidation of Monochloroaceteic Acid and Pyridine: Influence of Ozone, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 136, No. 1-2, pp. 163-168. https://doi.org/10.1016/S1010-6030(00)00331-2
  13. Kwon, B.G.(2008), Characterization of the Hydroperoxyl/Superoxide Anion Radical($HO_2{\cdot}/O_2{\cdot}^-$) Formed from the Photolysis of Immobilized $TiO_2$ in Continuous Flow, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 199, No. 1, pp. 112-118. https://doi.org/10.1016/j.jphotochem.2008.05.001
  14. Moraes, S. G., Freire, R. S. and Duran, N.(2000), Degradation and Toxicity Reduction of Textile Effluent by Combined Photocatalytic and Ozonation Processes, Chemosphere, Vol. 40, No. 4, pp. 369-373. https://doi.org/10.1016/S0045-6535(99)00239-8
  15. Nam, E. J., Cho, H. H., Choi, J. W., Lee, M. H. and Lee, H. K.(2001), The Removal of Humic Acid and Heavy Metals by using $TiO_2$ Photocatalysis, Journal of Korean Society of Water Quality, Vol. 17, No. 2, pp. 179-190.
  16. Nina, C., Peter, B. and Maaret, K.(1996), Degradation Products Formed During UV-Irradiation of Humic Waters, Chemosphere, Vol. 33, No. 2, pp. 245-255. https://doi.org/10.1016/0045-6535(96)00167-1
  17. Ollis, D.F., Pelizzetti, E. and Serpone, N.(1991), Destruction of Water Contaminant, Environmental Science & Technology, Vol. 25, No. 9, pp. 1523-1529.
  18. Rajeswari, R. and Kanmani, S.(2009), A Study on Synergistic Effect of Photocatalytic Ozonation for Carbaryl Degradation, Desalination, Vol. 242, No. 1-3, pp. 277-285. https://doi.org/10.1016/j.desal.2008.05.007
  19. Sanchez, L., Peral, J. and Domenech, X.(1998), Anilin Degradation by Combined Photocatalysis and Ozonation, Applied Catalysis B:Environmental, Vol. 19, No. 1, pp. 59-65. https://doi.org/10.1016/S0926-3373(98)00058-7
  20. Sun, L., Lu, H. and Zhou, J.(2008), Degradation of H-Acid by Combined Photocatalysis and Ozonation Processes, Dyes and Pigments, Vol. 76, No. 3, pp. 604-609. https://doi.org/10.1016/j.dyepig.2006.11.006
  21. Urano, K., Wada, H. and Takemasa, T. (1983), Empirical Rate Equation for Trihalomethane Formation with Chlorination of Humic Substances in Water, Water Research, Vol. 17, No. 12, pp. 1797-1802. https://doi.org/10.1016/0043-1354(83)90202-6
  22. Wang, S., Shiraishi, F. and Nakano, K.(2002), A Synergistic Effect of Photocatalysis and Ozonation on Decomposition of Formic Acid in an Aqueous Solution, Chemical Engineering Journal, Vol. 87, No. 2, pp. 261-271. https://doi.org/10.1016/S1385-8947(02)00016-5
  23. Wu, C. H., Chang, C. L. and Kuo, C. Y.(2008), Decolorization of Procion Red MX-5B in Electrocoagulation (EC), UV/TiO2 and Ozone-Related Systems, Dyes and Pigments, Vol. 76, No. 1, pp. 187-194. https://doi.org/10.1016/j.dyepig.2006.08.017
  24. Yang, J.K. and Lee, S.M.(2006), Removal of Cr(VI) and Humic Acid by Using $TiO_2$ Photocatalysis, Chemosphere, Vol. 63, No. 10, pp. 1677-1684. https://doi.org/10.1016/j.chemosphere.2005.10.005
  25. Yang, Y., Ma, J., Qin, Q. and Zhai, X.(2007), Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation, Journal of Molecular Catalysis A:Chemical, Vol. 267, No. 1-2, pp. 41-48. https://doi.org/10.1016/j.molcata.2006.09.010
  26. Zhang, P., Liang, F., Yu, G., Chen, Q. and Zhu, W.(2003), A Comparative Study on Decomposition of Gaseous Toluene by $O_3/UV,\;TiO_2/UV\;and\;O_3/TiO_2/UV$, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 156, No. 1-3, pp. 189-194. https://doi.org/10.1016/S1010-6030(02)00432-X
  27. Zou, L. and Zhu, B.(2008), The Synergistic Effect of Ozonation and Photocatalysis on Color Removal from Reused Water, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 196, No. 1, pp. 24-32. https://doi.org/10.1016/j.jphotochem.2007.11.008