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REGULARLY QUASI-ORDERED SPACES AND

NORMALLY QUASI-ORDERED SPACES

Seon Ho Shin*

Abstract. Generalizing normally quasi-ordered spaces, we intro-
duce a concept of regularly quasi-ordered spaces and study their
categorical properties. We obtain well behaved reflective subcate-
gories of the category Rqos of regularly quasi-ordered spaces and
continuous isotones, namely the full subcategory of Rqos deter-
mined by T0-objects among others, and this result can be extended
to that in the category Nqos of normally quasi-ordered spaces and
continuous isotones.

1. Introduction and main results

In 1940’s, Nachbin extended the measure theory and function theory
on topological spaces to those on topological partially ordered spaces([7]).
After that, there have been many attempts to study topological partially
ordered spaces by various authors([3], [4], [6], [8], [9], [11]).

It is well known that the category Pord of partially ordered sets and
isotones is mono-topological but the category Qord of quasi-ordered
sets and isotones is topological and therefore Qord is more convenient
than Pord. So we are interested in topological quasi-ordered spaces
determined by quasi-order relations instead of partial order relations.

A topological quasi-ordered space (X, τ,≤) is a set X endowed with
both a topology τ and a quasi-order ≤. A topological space (X, τ)
may be considered as a topological quasi-ordered space when it is real-
ized that X is a quasi-ordered set endowed with the discrete order and
a quasi-ordered set (X,≤) may be considered as a topological quasi-
ordered space with discrete or indiscrete topology. Therefore the study
of topological quasi-ordered spaces not only includes the study of general
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topology and quasi-ordered sets, but also reveals many generalizations
of results in functional analysis for those in function spaces and measure
theory.

In this paper, we study some properties of regularly quasi-ordered
spaces and normally quasi-ordered spaces, and also categorical prop-
erties of the category Rqos of regularly quasi-ordered spaces and the
category Nqos of normally quasi-ordered spaces. Moreover we obtain
well behaved subcategories of them. In particular, we show that Rqos
and Nqos are order compatible hereditary. Using some results about
normality of quasi-order in Nachbin([7]), we suggest a generalization of
Urysohn’s Theorem on topological spaces to topological quasi-ordered
spaces. We also show that the categories T0Rqos, T1Rqos, T2Rqos
and Rpos are epireflective subcategories, initially and finally dense in
Rqos, R0Rqos, R1Rqos and T−1

0 Rqos, respectively. Similarly, by
replacing Rqos with Nqos, we show that T0Nqos, T1Nqos, T2Nqos
and Npos are epireflective subcategories, initially and finally dense in
Nqos, R0Nqos, R1Nqos and T−1

0 Nqos, respectively.
For the terminology not introduced in the paper, we refer to Adamek,

Herrlich and Strecker [1] for the category theory and Bourbaki [2] for
topology and Davey and Priestley [5] for the order theory. Also we
assume throughout this paper that a subcategory of a category is full
and isomorphism closed.

2. Regularly quasi-ordered spaces

A continuous quasi-ordered space (X, τ,≤) is a topological quasi-
ordered space with a continuous order ≤, i.e., for any x ̸≤ y in X,
there are neighborhoods U of x and V of y such that u ̸≤ v for all u ∈ U
and v ∈ V ([7]).

It is well known ([7, 9]) that a continuous partially ordered space
is a T2-space but every topological space is a continuous quasi-ordered
space when it is endowed with the indiscrete order. Furthermore, in a
continuous quasi-ordered space (X, τ,≤) and any x ∈ X, ↑ x = {a ∈
X | x ≤ a} and ↓ x = {a ∈ X | a ≤ x} are closed.

The class of continuous quasi-ordered spaces and continuous isotones
forms a category which will be denoted by Wqos([9]).

Definition 2.1. (1) For a topological quasi-ordered space (X, τ,≤),
the order ≤ is said to be upper(lower, resp.) regular if for any closed
increasing(decreasing, resp.) subset F of X and a /∈ F , there are a
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decreasing(an increasing, resp.) neighborhood U of a and an increasing(a
decreasing, resp.) neighborhood V of F such that U

∩
V = ∅.

If ≤ is both upper and lower regular, then it is called a regular order.
(2) A regularly quasi-ordered space is a topological quasi-ordered

space with a both continuous and regular quasi-order.

Example 2.2. (1) For the two-point chain ({0, 1}, I ,≤) with the
indiscrete topology, ≤ is regular but not continuous. Conversely, for the
two-point chain ({0, 1}, τ,≤) with τ = {∅, {0}, {0, 1}}, ≤ is continuous
but not regular.

(2) ConsiderX = {a, b, b′}, the topology τ = {∅, {a}, {b}, {a, b}, {b, b′},
X} and the graph G≤ = △X

∪
{(a, b), (a, b′), (b, b′), (b′, b)}, where △X =

{(x, x) | x ∈ X}. Then (X, τ,≤) is a regularly quasi-ordered space.

One has the following immediately from Definition 2.1.

Remark 2.3. Let (X, τ,=) be a topological quasi-ordered space with
the discrete order. Then one has:

(1) (X, τ,=) ∈ Wqos if and only if (X, τ) is a Hausdorff space,
because the graph G= of the discrete order is ∆X .

(2) (X, τ,=) is a regularly quasi-ordered space if and only if (X, τ)
is a regular space, because for any A ⊆ X, A is both increasing and
decreasing. But we note that (X, τ) in Example 2.2 (2) is not a regular
space.

(3) If (X, τ,≤) is a regularly quasi-ordered space and τ ⊆ τ
′
, then

(X, τ
′
,≤) need not be a regularly quasi-ordered space again(see [6]).

(4) There is a continuous quasi-ordered space which is not a regularly
quasi-ordered space. Indeed, consider the set R of real numbers and the
discrete order = on R. For any non-zero real number x, let Nx be the
filter generated by the set of open intervals in R containing x, and N0 the
filter generated by {(−p, p)−{ 1

n |n ∈ N }|p > 0} containing 0. Then there
is a unique topology τ on R such that Nx is precisely the neighborhood
filter of x with respect to τ . Since (R, τ) is a Hausdorff space but not a
regular space, (R, τ,=) is a continuous but not regularly quasi-ordered
space.

Let Rqos be the full subcategory of Wqos determined by regularly
quasi-ordered spaces and Rpos its full subcategory determined by a
partial order relation instead of a quasi-order relation. Then Rpos ⊂
Rqos ⊂ Wqos.

Theorem 2.4. For any topological quasi-ordered space (X, τ,≤), ≤
is upper(lower, resp.) regular if and only if for each x ∈ X and an
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open decreasing(increasing, resp.) neighborhood U of x, there exists
a decreasing(an increasing, resp.) neighborhood V of x such that the
closure V of V is contained in U .

Proof. Let x ∈ X and U be an open decreasing neighborhood of x.
Then the complement CU of U is closed increasing and x /∈ CU . Since
≤ is upper regular, there are a decreasing neighborhood V of x and an
increasing neighborhood W of CU such that V

∩
W = ∅. So there is

an open G such that CU ⊆ G ⊆ W . Since V ⊆ CW ⊆ CG ⊆ U , the
closure V of V is contained in U .

Conversely, let F be a closed increasing set and a /∈ F . Then CF is
open decreasing and a ∈ CF . By the assumption, there is a decreasing
neighborhood V of a with V ⊆ CF . So CV is increasing and F ⊆
CV ⊆ CV . Hence CV is an increasing neighborhood of F , and clearly
V
∩

CV = ∅. Thus ≤ is an upper regular quasi-order.
We have dually the result for a lower regular quasi-order.

A subspace of a regular space is again regular, but the following
example exhibits that it is not the case for a regular quasi-order.

Example 2.5. Let X be the three point chain {0, 1, 2} endowed with
the topology given by the only non-trivial open set {0, 2}. Then the
given order is clearly a regular quasi-order, for increasing or decreasing
closed sets in X are trivial, i.e., ∅ or X. The order on the subspace A
of X consisting of {0, 1} is not regular as indicated in Example 2.2 (1).

Definition 2.6. A topological quasi-ordered subspace (A, τA,≤A)
of (X, τ,≤) is said to be compatibly quasi-ordered if for each τA-closed
increasing(decreasing, resp.) set F in A, there are a τ -closed increas-
ing(decreasing, resp.) set F ∗ in X such that F = F ∗∩A.

Proposition 2.7. Any compatibly quasi-ordered subspace of a reg-
ularly quasi-ordered space is also a regularly quasi-ordered space.

Proof. Let (A, τA,≤A) be a compatibly quasi-ordered subspace of a
regularly quasi-ordered space (X, τ,≤) and F a τA-closed increasing sub-
set in A and a ∈ A− F . Then there exists a τ -closed increasing subset
F ∗ in X such that F = F ∗∩A. Since a /∈ F ∗ and (X, τ,≤) is a regularly
quasi-ordered space, there are an increasing neighborhood U of F ∗ and
a decreasing neighborhood V of a in X such that U

∩
V = ∅. So U

∩
A

and V
∩

A are an increasing neighborhood of F and a decreasing neigh-
borhood of a, respectively, in A. Moreover, (U

∩
A)

∩
(V

∩
A) = ∅, and

hence ≤A is upper regular.
Dually one has the proof for the lower regular case.
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Since a subspace of a continuous quasi-ordered space is clearly a con-
tinuous quasi-ordered space, (A, τA,≤A) is also a regularly quasi-ordered
space.

3. Normally quasi-ordered spaces

In this section, we deal with normal quasi-ordered spaces which gen-
eralize normal spaces. The following definition is due to Nachbin [7].

Definition 3.1. For a topological quasi-ordered space (X, τ,≤), the
order ≤ is said to be normal if for any closed increasing subset F1

and closed decreasing subset F2 of X with F1
∩

F2 = ∅, there are an
increasing neighborhood U1 of F1 and a decreasing neighborhood U2 of
F2 such that U1

∩
U2 = ∅.

A normal quasi-order need not be regular. Indeed, consider X =
{a, a′, b, c}, the topology τ = {∅, {a, a′}, {b}, {a, a′, b}, X} and the graph
G≤ = △X

∪
{(a, a′), (a′, a), (a, b), (a′, b), (b, c), (a, c), (a′, c)}. Then ≤ is

normal but not regular. Also there are topological quasi-ordered spaces
with normal orders which are not continuous. For a simple example, the
two-point space ({0, 1}, I ,≤) in Example 2.2 (1), ≤ is normal but not
continuous.

Definition 3.2. A normally quasi-ordered space is a topological space
with a both continuous and normal quasi-order.

Example 3.3. Consider a set X = {a1, a2, b1, b2}, the topology τ =
{∅, {a1, a2}, {b1, b2}, X} and the graph G≤ = {(ai, aj)| 1 ≤ i, j ≤
2}

∪
{(bs, bk)|1 ≤ s, k ≤ 2}

∪
{(ai, bs)| 1 ≤ i ≤ 2, 1 ≤ s ≤ 2}. Then

(X, τ,≤) is a normally quasi-ordered space.

Let Nqos(Npos, resp.) denote the full subcategory of Wqos de-
termined by normally quasi-ordered(normally partially-ordered, resp.)
spaces. Then Npos ⊂ Nqos ⊂ Wqos.

Remark 3.4. (1) A normally quasi-ordered space is a regularly quasi-
ordered space, but the converse does not hold, i.e., Nqos ⊂ Rqos(see
[6]).

(2) (X, τ,=) ∈ Nqos if and only if (X, τ) is a normal space. But for
the space (X, τ,≤) in Example 3.3, (X, τ) is not a normal space.

(3) If (X, τ,≤) ∈ Nqos and τ ⊆ τ
′
, then (X, τ

′
,≤) need not be in

Nqos(see[7]).



594 Seon Ho Shin

Theorem 3.5. For any topological quasi-ordered space (X, τ,≤), ≤
is normal if and only if for any closed increasing(decreasing, resp.) subset
F of X and an open increasing(decreasing, resp.) neighborhood U of F ,
there is an increasing(a decreasing, resp.) neighborhood V of F with
V ⊆ U .

Proof. Assume that ≤ is normal and U is an open increasing neigh-
borhood of a closed increasing set F , then CU is closed decreasing
and CU

∩
F = ∅. Since ≤ is normal, there are an increasing neigh-

borhood V of F and a decreasing neighborhood W of CU such that
V
∩

W = ∅. Since there is an open set G such that CU ⊆ G ⊆ W ,
V ⊆ CW ⊆ CG ⊆ U , and hence V ⊆ U .

Conversely, for any closed increasing subset F1 and closed decreasing
subset F2 with F1

∩
F2 = ∅, CF2 is open increasing and F1 ⊆ CF2. By

the assumption there is an increasing neighborhood V of F1 such that
V ⊆ CF2. And CV is also a decreasing neighborhood of F2, and clearly
V
∩

CV = ∅. Thus ≤ is normal.

Now, we suggest a good generalization of Urysohn’s Separation Theo-
rem on topological spaces to topological quasi-ordered spaces as follows.
In the following, ℜ denotes the real line endowed with the usual topology
and the usual order.

Theorem 3.6. A topological quasi-ordered space (X, τ,≤) is a nor-
mally quasi-ordered space if and only if it satisfies:

(1) for any closed increasing subset F1 and any closed decreasing
subset F2 of X with F1

∩
F2 = ∅, there is a continuous isotone f :

X −→ ℜ such that f(F1) ⊆ {1}, f(F2) ⊆ {0} and 0 ≤ f ≤ 1, and
(2) for any x ̸≤ y, there is a continuous isotone g : X −→ ℜ such that

g(x) > g(y).

Proof. It is known that ≤ is normal if and only if (1) holds(see [7]).
So it remains to show that a normal order ≤ is continuous if and only if
(2) holds.

Assume that ≤ is continuous and x ̸≤ y, ↑ x = {a ∈ X | x ≤ a}
and ↓ y = {b ∈ X | b ≤ y} are disjoint closed increasing and closed
decreasing sets, respectively. Moreover, since ≤ is normal, there is a
continuous isotone f : X −→ ℜ such that f(↑ x) ⊆ {1}, f(↓ y) ⊆ {0}
by (1) and hence f(x) = 1 > 0 = f(y).

Conversely, let x ̸≤ y, then there is a continuous isotone g : X −→ ℜ
with g(x) > g(y). Choose any real number ξ with g(y) < ξ < g(x). Then
V = {a ∈ X | g(a) > ξ} is clearly an open increasing neighborhood of
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x, W = {b ∈ X | g(b) < ξ} an open decreasing neighborhood of y, and
V
∩

W = ∅. This completes the proof.

Remark 3.7. Any subspace of a normally quasi-ordered space need
not be normally quasi-ordered(see [6]). But any compatibly quasi-ordered
subspace of a normally quasi-ordered space is also a normally quasi-
ordered space, by the exactly same argument as that in Proposition 2.7.

4. Reflective subcategories between Rqos(Nqos, resp.) and
Rpos(Npos, resp.)

The category T0Rqos(T1Rqos, T2Rqos, resp.) denotes the full
subcategory of Rqos consisting of those objects (X, τ,≤) such that
(X, τ) is a T0-space (T1-space, T2-space, resp.). Similarly we define
the full subcategories T0Nqos, T1Nqos and T2Nqos of Nqos.

Theorem 4.1. The category T0Rqos(T0Nqos, resp.) is an epire-
flective subcategory of the category Rqos(Nqos, resp.). Moreover,
T0Rqos(T0Nqos, resp.) is initially dense in Rqos(Nqos, resp.).

Proof. For any (X, τ,≤) ∈ Rqos, the T0Rqos-reflection of (X, τ,≤)
can be constructed as follows:

Let E : T0Rqos ↪→ Rqos be the embedding functor. For any
(X, τ,≤) ∈ Rqos, we define a relation R = {(x, y) ∈ X ×X | N (x) =
N (y)}, where N (x) is the neighborhood filter of x (x ∈ X). Then
R is an equivalence relation. On the quotient set X/R, let τR be the
quotient topology on X/R, i.e., the final topology with respect to the
quotient map q : X −→ X/R defined by q(x) = [x], and the graph
G≤R = {([x], [y]) ∈ X/R×X/R | there are a, b ∈ X such that a ≤ b,
q(a) = [x] and q(b) = [y]}. Clearly ≤R is a quasi-order and (X/R, τR) is
a T0-space. Moreover, since q : (X, τ,≤) −→ (X/R, τR,≤R) is an onto
open final map and every open set in (X, τ,≤) is saturated with respect
to τR, (X/R, τR,≤R) ∈ T0Rqos.

For any (Y, τ ′,≤′) ∈ T0Rqos and f : (X, τ,≤) −→ E((Y, τ ′,≤′)) in
Rqos, we have the relation R ⊆ ker(f). By the property of topological
quasi-ordered spaces(see [10]), there is a unique continuous isotone f :
(X/R, τR,≤R) −→ (Y, τ ′,≤′) defined by f([x]) = f(x) with E(f)◦q = f .
Thus (q, (X/R, τR,≤R)) is the T0Rqos-reflection of (X, τ,≤).

For the second statement, we note that the graphG≤ = (q×q)−1(G≤R),
for ≤ is a continuous order on (X, τ,≤) and hence ≤ is the initial order
for q. Also the topology τ on X is initial for q, because for any open U
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in X, U = q−1(q(U)) and hence the reflection q is initial. Thus T0Rqos
is initially dense in Rqos.

With the similar process we have the result for T0Nqos and Nqos.

We define the following full subcategories of Rqos:

Definition 4.2. (1) R0Rqos consists of those objects X in Rqos
which satisfy the condition: for any x, y ∈ X, if there is an open neigh-
borhood U of x with y /∈ U , then there is an open neighborhood V of y
with x /∈ V .

(2) R1Rqos consists of those objects X in Rqos which satisfy the
condition: for any x, y ∈ X, if there is an open neighborhood U of x
with y /∈ U , then there are open neighborhoods U ′ and V ′ of x and y,
respectively, such that U ′∩V ′ = ∅.

(3) T−1
0 Rqos consists of those objects X in Rqos which satisfy the

condition: for any x, y ∈ X, x ≤ y and y ≤ x if and only ifN (x) = N (y).

From the above definitions, we have the following inclusion between
them immediately.

Remark 4.3. (1) Rpos ⊂ T2Rqos ⊂ T1Rqos ⊂ T0Rqos ⊂ Rqos
(2) Rpos ⊂ T−1

0 Rqos ⊂ R1Rqos ⊂ R0Rqos ⊂ Rqos

Proposition 4.4. (1) R0Rqos = {(X, τ,≤) | T0Rqos-reflection of
(X, τ,≤) is a T1-space}

(2) R1Rqos = {(X, τ,≤) | T0Rqos-reflection of (X, τ,≤) is a T2-
space}

(3) T−1
0 Rqos = {(X, τ,≤) | T0Rqos-reflection of (X, τ,≤) is a par-

tially ordered space}

Proof. (1) and (3) are similar to the proof of Propositions 2.14 and
2.4, respectively, in [9].

(2) For any (X, τ,≤) ∈ R1Rqos, it is enough to show that the
T0Rqos-reflection (X/R, τR,≤R) is a T2-space. Suppose that [x] ̸= [y]
in (X/R, τR,≤R). ThenN (x) ̸= N (y) so that we may assume that there
is an open neighborhood U of x with y /∈ U . Since (X, τ,≤) ∈ R1Rqos,
there are open neighborhoods V and W of x and y, respectively, such
that V

∩
W = ∅. So q(V ) and q(W ) are disjoint open neighborhoods of

[x] and [y], respectively. Hence (X/R, τR,≤R) is a T2-space.
For the converse, take any (X, τ,≤) in the right hand side. Suppose

that for x, y in X, there is an open neighborhood U of x with y /∈ U .
Then N (x) ̸= N (y), and hence [x] ̸= [y]. Since (X/R, τR,≤R) is a
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T2-space, there are disjoint open neighborhoods V and W of [x] and [y],
respectively. So q−1(V ) and q−1(W ) are disjoint open neighborhoods of
x and y, respectively. Hence (X, τ,≤) ∈ R1Rqos.

Corollary 4.5. T1Rqos, T2Rqos and Rpos are epireflective sub-
categories and initially dense in R0Rqos, R1Rqos and T−1

0 Rqos, re-
spectively.

Using the fact that Rpos is finally dense in Wqos, we have T0Rqos,
T1Rqos, T2Rqos and Rpos are finally dense in Rqos, R0Rqos,
R1Rqos and T−1

0 Rqos, respectively.

Replacing Rqos by Nqos in the above Definition 4.2 through Corol-
lary 4.5, we have the analogous results, namely T0Nqos, T1Nqos,
T2Nqos and Npos are epireflective subcategories, initially dense and
finally dense in Nqos, R0Nqos, R1Nqos and T−1

0 Nqos, respectively.

Collecting the above facts, we have the following diagram of re-
flective subcategories between the category Rqos(Nqos, resp.) and
Rpos(Npos, resp.) :

Rqos
(Nqos)

r ↗ ↖d
R0Rqos(R0Nqos) T0Rqos(T0Nqos)

r ↑ ↖d r ↑
R1Rqos(R1Nqos) T1Rqos(T1Nqos)

r ↑ ↖d r ↑
T−1

0 Rqos(T−1
0 Nqos) T2Rqos(T2Nqos)

↖d r ↗
Rpos
(Npos) ,

where d is the inclusion functor with initial and final dense reflection
and r is the inclusion functor with epireflection.
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