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WEAK DISTANCES

SE Hwa CHUNG*

ABSTRACT. In this paper, we introduce a concept of a weak dis-
tance and show that AP is a bireflective subcategory of W D. More-
over, we introduce a concept of a co-tower which is an equivalent
description of approach spaces.

1. Introduction

In order to study the ”approximation structure,” various structures
such as topological structures, quasi-metric spaces, quasi-uniform spaces,
uniform spaces, convergence structures have been introduced. The nat-
ural question is whether there is one setting under which the above
structures can be studied. There have been at least three conceptual
approaches, namely syntopogenous structures introduced by Csdszdr|2],
nearness structures by Herrlich[4] and approach structures by Lowen
[7]. These new structures or constructs should contain old ones as well-
behaved subconstructs like reflective or coreflective subconstructs.

The main idea behind approach system is to axiomatize the notion of
distance between points and sets in such a way as to generalize both the
oo-metric and topological situations. The concept of distance is most
closely related to the concept of a k-metric as introduced by Shchepin[9].
In [8], seven distinct but equivalent ways to axiomatize an approach
space are given and in [7] Lowen showed that Top is bireflective and
bicorefective in AP and pgM ET® is bicoreflective in AP.

In this paper, we introduce a concept of a weak distance, which is
a generalization of a concept of approach space and show that AP is a
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bireflective subcategory of W D. Moreover, we introduce a concept of a
co-tower which is an equivalent description of approach spaces.

The rest of this paper is organized as follows. In section 2, we inves-
tigate approach spaces from the view of conceptual aspects. In section
3, we introduce a concept of a weak distance and investigate approach
spaces from the view of categorical aspects. In section 4, we charac-
terize approach space via interior operators and introduce a concept of
co-towers which is equivalent with the concept of towers.

For the general background of approach spaces and copg-metric spaces,
we refer to [8] and for the category theory, we refer to [1] and [5]. In
what follows, given a set X we denote its power set by 2%. V stands for
supremum and A stands for infimum.

2. Preliminaries

In this section, we investigate approach spaces from the view of con-
ceptual aspects.
For a set X and a function

§: X x 2% — 0,00
consider the following properties;
(A1) for each z € X, 6(z,x) =0,
(A2) 0(x,0) = oo,
(A3) for each r € X and 9 C 2%, §(x,U0) = A{6(z, A) : A € 9},
(A4) for each z € X and A, B C 2X d-(x,AUB) = 6;(z,A) N 0,(z, B),
(A5) for 2,2 € X, 8(x, {y}) < 8z {=}) +3(=. {y}).
(A6) Vz € X,VA € 2X Yk € [0,00]: 6(z, A) < 8(z, A®)) + k, where
AR = fr e X : 6z, A) < kY,
(A7) Vx € X,VA, B € 2%, §(x, A) < 6(z, B) + Viepd(b, A),
(A8) if §(z, A) > 0, then there is a subset G C X such that z € G and
for any g € G, 6(9, X —GUA) >0,
(A9) if BC AC X, then for any z € X,

5(z, A) < 6(z, B).

The following proposition contains some simple but fundamental prop-
erties which we will use implicitly in the sequel.

PROPOSITION 2.1. For a function § : X x 2% — [0, 0], one has the
following:

(1) (A5) and (A3) imply (A7).
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(2) (A7) implies (A5).
(3) (A6) and (A9) imply (A7).
(4) (A7) implies (A6).

Proof. (1) Take any x € X and A, B C 2%, then for each z € A and
y € B,
d(z,2) <o(z,y)+ d(y, 2)
and then
Oz, A) < o(z,y) +0(y, A)
and hence
d(z,A) < 6(x, B) + Vyepd(y, A).
(2) it is founded in [7].
(3) it is founded in [8].
(4) Take any k € [0,00], A € 2%, then by assumption,

Sz, A) < 6z, AP £V, amd(a, A)
and so
§(z, A) < 8(z, AR + ¢
for V{5(a,A) : a € AW} < k. O

By the above proposition if a function § : X x 2%X — [0, oo] satisfies
(A3), then (A5), (A6) and (A7) are equivalent with each other, because
0 satisfies (A3) and hence it satisfies (A9). It is clear that (AS8) is
equivalent with the property: for any z € X and A € 2%,

§(z, A) = 6(x, AY)

Hence (A6) implies (A8). Finally, a function § : X x 2% — [0, 0]
satisfies (A7) if and only if it satisfies the following : for any z € X and
A, B C 2¥,

Ayenld(w, A) — 8(y, A)] < 8(, B).

DEFINITION 2.2. ([8]) A function d : X x X — [0,00] is called an
extended pseudo-quasi-metric (shortly copg-metric) on X if it satisfies
the following properties: for all z,y,z € X,

(M1) d(z,x) =0,

(M2) d(z,y) < d(x,2) + d(z,y).

ProPOSITION 2.3. ([8]) Let (X, dx) and (Y, dy) be copg-metric spaces,
then a function f : X — Y is said to be nonexpansive if it fulfills the
property

dy (f(x), f(y)) < dx(z,y) Yo,y € X.
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pgM ET denotes the category of copg-metric spaces and nonexpan-
sive functions.

The following is an internal characterization of copg-metric.

PROPOSITION 2.4. A function d : X x X — [0, 00] is a copg-metric if
and only if there is a function

61 X x 2% =0, 00]
satisfying properties: (A1), (A2), (A3), (A6) and for any x,y € X,
6d(x7y) = d(.’lﬁ,y)

Proof. For any x € X and A € 2% let §4(z, A) = A{d(z,a) : a € A}
then it is easy to show that it satisfies all the properties. The converse
is clear. 0

The following is an internal characterization of topology:

PROPOSITION 2.5. A subfamily 7 C 2% is a topology on X if and
only if there is a function

60 X x 2% = {0, 00}

satisfying properties: (Al), (A2), (A4), (A6) and G € 7 if and only if
for any g € G, 6:(9, X —G) >0

Proof. The function 6, : X x 2% — {0, 00} defined by

_J 0 =zed (A4
Or(2, 4) = { oo x ¢ cl(A).
satisfies all the properties. The converse is clear. O

REMARK 2.6. (1) A subfamily 7 C 2% is a finitely generated topology
on X if and only if there is a function

6y 0 X x 2% = {0,00}

satisfying properties: (Al), (A2), (A3), (A6) and G € 7 if and only if
for any g € G, 6:(9, X — G) > 0.
(2) Every oopg-metric satisfies the property (A3), but not topology.
(3) Topology and oopg-metric have properties (Al), (A2), (A4) and
(A6) in common with each other.

The following is due to Lowen.

DEFINITION 2.7. A function § : X x 2X — [0, 00] is called a distance
on X if it satisfies properties (A1), (A2), (A4) and (A6).

By the preceding remark, every distance is both topology and copg-
metric.
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3. Relationship between AP and WD

In this section, we introduce a concept of a weak distance and inves-
tigate approach spaces from the view of categorical aspects. In the last
section we observed that topology and copg-metric have the properties
(A1), (A2), (A4), (A5) and (A8) in common with each other. From this
observation, we have the following definition:

DEFINITION 3.1. A function § : X x 2% — [0, o0] is said to be a weak
distance on X if it satisfies properties (A1), (A2), (A4), (A5) and (AS).
The pair (X, ) is called a weak distance space (or simply, wd-space).

By Proposition 2.1 and the preceding remark, every weak distance is
also both topology and copg-metric and the concept of weak distances
is weaker than that of distances.

THEOREM 3.2. Every approach space is a wd-space.
Proof. Tt is immediate from Definitions 2.7 and 3.1. O

REMARK 3.3. If X is a finite set, then a function & : X x 2%X — [0, o0]
is a distance on X if and only if it is a weak distance on X.

DEFINITION 3.4. Let (X, dx) and (Y, dy) be wd-spaces, then a func-
tion f: X — Y is said to be:
(1) a contraction if it fulfills the property:
Sy (f(z), f(A)) <dx(x,A) Vre X, Ae2X
(2) an isomorphism if it is a 1-1 correspondence and both f and
the inverse function of f are contractions.

THEOREM 3.5. For wd-spaces X,Y and Z, the following holds:

(1) The identity function idx : X — X is a contraction.

(2) For contractions f : X — Y and g : Y — Z, the composition
go f: X — Z is again a contraction.

THEOREM 3.6. Let X be a set and (Y, «) a wd-space and f : X — Y
a function. Then the function

0o s X x 2% = [0,00] : (2, 4) = a(f(2), f(4))
satisfies the following:
(1) § is a weak distance on X
(2) For any weak distance space (Z,n), a function g : (Z,n) — (X, 9)
is a contraction if and only if f o g: (Z,n) — (Y,«) is a contraction.
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Proof. (1) For any = € X, a(f(x), f(z)) = 0 and so 6(x,z) = 0. Take
any x,y,z € X, then a(f(z), f(y)) < a(f(z), ()) a(f(z )f( )) and
s0 0(x,y) < 6(x,2) +6(z,y). Since f(0) = a(f(z), f(0)) = oo,
§(x,0) = co. Take any A, B € 2%, then

0(x, AU B)
= a(f(x), f(AUB))
= (z,A) Nd(x, B).

Suppose 6(x, A) > 0, then a(f(x), f(A)) > 0 and so there is a subset G D
Y such that f(z) € G and for any g € G, a(g, f(A)) > 0 and a(g,Y —
G) > 0. Take any a € f~1(G), then f(a) € G and so a(f(a), f(A)) > 0.
Thus 6(a, A) > 0. Since f(X — f71(GQ)) CY — G, for any a € f~HG),
one has the following:

0 < a(f(a),Y - G) < a(f(a), F(X ~ f7H(G)) = 6(a, X — f7H(G))
Hence 0 < 6(a, X — f~1(G)). In all, § is a weak distance on X.

(2) Suppose g : (Z,n) — (X,0) is a contraction, Since f : (X,d) —
(Y,«) is a contraction, by Theorem 3.5 fog : (Z,n) — (Y,«) is a
contraction. Suppose fog : (Z,n) — (Y,«) is a contraction, then

a(fog(z), feg(A)) < n(z,A). Since a(fog(z), fog(A)) = d(g(2),9(A)),
3(g9(2),9(A)) <n(z,A) and hence g is a contraction. O

W D denotes the category of wd-spaces and contractions.
AP denotes the category of approach spaces and contractions.

The following is immediate from Theorem 3.2:
THEOREM 3.7. AP is a full isomorphism-closed subcategory of W D.
pgM ET*(X) denotes the set of all copg-metric on a set X.

DEFINITION 3.8. ([8]) A subset ¢ of pgM ET>°(X) is called a gauge
if it ia an ideal in pgM ET°(X) which fulfills following propetry:

IfVa € X,Vk > 0,Vw < oo : 3dv* € ¢ sucht that d(z, ) Aw < dv*(z, )+
k, then d € g.

DEFINITION 3.9. ([8]) A subset ¢ of pgM ET>(X) is called a gauge
basis if it is an ideal bais in pgM ET>(X).

TuEOREM 3.10. ([8]) If § : X x 2% — [0,00] is a distance, then
G ={de€pgMET>*(X):VAC X,Vx € X : Ngead(z,a) < (z,A)}

is a gauge on X.
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The ¢s5 in the above theorem is called the associated gauge with 6.
In the following lemma, we will show that the associated gauge s
with a weak distance d is a non-empty set.
LEMMA 3.11. (1) If § : X x 2% — [0, 00] is a weak distance, then the
following copg-metrics is in gg.
di (2, y) = [6(2,Y) A (Auex-v(u,Y)) = 8(y,Y) A (Auex—y6(u, Y))] VO
(2) If § - X x2% — [0, oc] is a distance, then the following copg-metric
is in ¢

dy(z,y) = [6(2,Y) = 6(y, V)| VO

In particular, Neeydy (x,a) = 0(z,Y)
Proof. (1) For any A € 2¥ and = € X,

0 ifreY
I ) Nuex—vo(w,Y) ifx¢Y and ACY
Nacady (z,0) =9 ifr¢Yand ACX Y

0 ifx¢Y and A # 0.
Hence Ageady (z,a) < §(z, A) for A CY. Thus d% is in .

(2) It follows from Proposition 2.1 that for any A € 2% and z € X,
Nacady (€, a) = [Naca[0(z,Y) = 6(a,Y)]] VO < 6(z, A).

Thus dy- is in ¢5. The particular part is immediate from the fact that
for any a €Y, 6(a,Y) = 0. O

Note that Lowen proved Theorem 3.10 without using the axiom (A6)
in [7]. Using the above lemma, one has the following theorem.

THEOREM 3.12. 6 : X x 2¥ — [0, 00] is a weak distance, then
¢={depgM™>(X):VAC X,V € X : Ngead(x,a) <d(x,A)}
is a gauge on X.
Proof. This goes along the same lines as Theorem 3.10. O

The following is now an immediate consequent of Lemma 3.11 and the
above theorem.

THEOREM 3.13. ([8]) If§ : X x 2% — [0, 0] is a distance and  is the
associated gauge, then we have

O(x, A) = Vgec Naea d(z,a)Ve € X,VAC X
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THEOREM 3.14. ([8]) If a subset ¢ of pgM ET*>*(X) is a gauge on X
and 0 is the associated distance, then

¢={d e pgM™>(X):VAC X,Vo € X : Ngead(z,a) < (z,A)}.

THEOREM 3.15. ([8]) If (X, 0) and (Y, «v) are distance spaces, then a
function f : X — Y is a contraction if and only if Vd € ¢, : do(fx f) € 5.

09 denotes the distance associated with the gauge ¢5. The combined
results of 3.10, 3.11, 3.13, and 3.14 prove that distance and gauge are
equivalent with each other and that 69 = § if ¢ is a distance, and the
weak distance associated with gauge is a distance. Using this notations,
we have the following:

THEOREM 3.16. AP is a bireflective subcategory of WD. For any
weak distance space (X,0), its AP-bireflection is given by

idx : (X,9) = (X, 89).

Proof. Tt is easily verified that idx : (X,0) — (X, d9) is a contraction.
Now suppose that (Y, n) is a approach space and f : (X,0) — (Y,n) is a
contraction. Firstly, we show that f: (X,¢,;) = (Y,<s) is a contraction.
Indeed, take any d € ¢, then

Vieq, Naca d(f(z), f(a)) < n(f(x), F(A)).
Since f : (X,6) — (Y,n) is a contraction,Vge,, Naca d(f(z), f(a)) <
§(z, A) and hence for any x € X and A € 2%

Naead(f(x), f(a)) < 6(x, A).
Thus do (f x f) € ¢s. By Theorem 3.15, f : (X,d9) — (Y,n9) is a
contraction and so f : (X,d9) — (Y,n) is a contraction. O

Collecting the above theorems, we have the following:

THEOREM 3.17. A weak distance § on a set X is a distance if and
only if the identity function idx : (X,0) — (X, d9) is an isomorphism.

4. Co-towers

In this section, we characterize approach space via interior opera-
tor and introduce a concept of co-towers, which is equivalent with the
concept of towers. It is worth noting that in topological spaces, the
complement of the interior of a set is equal to the closure of the comple-
ment of the set and in an approach space (X, d), A ig interpreted as
the closure of the set A.
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THEOREM 4.1. Let (X,0) and (Y, «) be distance spaces and f : X —
Y be a function then following are equivalent:

(1) f:(X,d) = (Y, ) is a contraction.

(2)Vz € X,¥G €2Y : a(f(z),Y —G) <é(z, X — f7HQ)).

Proof. (1) = (2) Take any x € X and G € 2Y, then
a(f(x),Y —G)
< a(f(a), f(X - f7H(G)))
S 5('7;7X - f_l(G>)7

because f : (X,8) — (Y,a) is a contraction and f(X — f~1(G)) C
Y — G. Thus
a(f(x),Y = G) <é(z, X - f7H(Q))
(2) = (1) Take any € X and A € 2%, then

a(f(x), f(A))

< Oz X — fTHY — f(A))

< O(z, 4),
because f~1(Y — f(A)) C X — A. Thus a(f(z), f(A)) < §(x, A) and so
f is a contraction. O

THEOREM 4.2. A function 6 : X x 2% — [0,00] is a distance if and
only if it satisfies the following :
(I1) §(x,0) = o0
(I12) 0 < 0(z, A) impliesx € X — A,
(I3) for any x € X and A, B € 2%, §(z, AU B) = §(x, A) A 6(z, B),
(I4) If k < 6(x, A) then there is a subset G C X such that 6(xz, A) <
d(z,X — G)+k and for any g € G, k < (g, A).

Proof. To show the only-if part it is suffices to show that it satisfies
axioms (I2) and (I4). To show that it satisfies (A1), take any x € X
and suppose 0(x,z) > 0 then by (12), x € X — x, which is a contraction,
Hence §(z,z) = 0 and so ¢ satisfies (A1). To show that it satisfies (A6),
suppose k € [0,00) and k < d(x, A), then, by (I4), there is a subset G of
X such that 6(x, A) < d(z,X —G) + k and for any g € G, k < 6(g, A).
Then G C X — AF and so by the above lemma

5(x, X —G) < 8z, AR,

Since §(z, A) < 8(z, X — G) + k, 6(z, A) < 6(x, A®) + k. To show that
if part, take any = € X and A € 2% and suppose 0 < §(x, A) and x € A,
then by axioms (Al) and (A5), §(z, A) = 0, which is a contraction.
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Hence z € X — A and so § satisfies (I2). Suppose k < §(z, A) then by
(A6), 6(x, A) < 6(z, A®) +k, then 6(x, A) < d(z, X —G)+ k. If g € G,
then g ¢ A* and hence k < 6(g, A). O

We already mentioned that there are several equivalent descriptions
of distance. The following is one of them.

DEFINITION 4.3. ([8]) A family of functions
tre - 2% = 2%X(k €]0,00))

is called a tower on X if it satisfies the following axioms:
(T1) VA € 2% Vk € [0,00) : A C t3(A),
2) Vk € [0,00) : tx(0) = 0,
) VA, B e 2X,Vk‘ € [0, OO) : tk(A @) B) = tk(A) U tk( )
) VA € QX,VIC,Z € [0,00) : tk+l(A) = tk(tl(A))
)

(T

(T3
(T4
(T5) VA € 2% Vk € [0,00) : tp(A) = Np<ity(A).

Let X be a set and § : X x 2¥ — [0,00] a function. Then for any
A€ 2X and k € [0,00),
X - AW = (X — A)
where Ay = {x € A:(z,X — A) > k}. Using this fact and notation,
we have the following definition:
DEFINITION 4.4. A family of functions
i 0 2% = 2%(k € ]0,00))
is called a co-tower on X if it satisfies the following axioms:
(CT1) VA € 2% Vk € [0,00) : ix(A) C A
(CT2) Vk € [0,00) i (X) = X
(CT3) VA, B € 2% ¥k € [0,00) : i1,(A N B) = i,(A) Nip(B)
(CT4) VA € QX,Vk,l S [0, OO) : ’L'k+l<A) lk(’bl(A))
(CT5) VA € 2%, Vk € [0,00) : ix(A) = Upqis(A)
Notice that by (CT3) and (CT5) we have

THEOREM 4.5. (tk)re[,00) IS @ tower on a set X, then the family
(ik)kefo,00) defined by

Q2% 5285 A5 X — (X — A)

is a co-tower on X.
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Proof. 1t is immediate from Definitions 4.3 and 4.4. O

THEOREM 4.6. (ik)ke[o,oo) is a co-tower on a set X, then the family
(tk)refo,00) defined by

te 28 525 1A 5 X — (X — A)
is a tower on X.

Proof. 1t is immediate from Definitions 4.3 and 4.4. O

THEOREM 4.7. ([8]) Let (X,d) and (Y, «) be distance spaces and
f: X —Y be a function, then the following are equivalent:

(1) f:(X,d) — (Y,«a) is a contraction.

(2) VA € 2X Yk € [0,00) : f(t3(A)) C t2(f(A)).

THEOREM 4.8. A function f : (X,d) — (Y, «) is a contraction if and
only if for any A € 2% and k € [0,00) : f(X —i3(A)) C Y — ¢ (f(A)).

Proof. Take any A € 2% and, then it follows from the above theorems
that k£ € [0, 00).

F(X —i(A))
C FX = A) CH(F(X = A) CHR(Y - f(A))
= Y =i (f(A).
The if-part is similar to the only-if part. O

Collecting all the above, we have the following:

COROLLARY 4.9. Towers and co-towers are equivalent systems and
hence the concept of co-towers Is equivalent with that of distances.
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