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WEAK DISTANCES

Se Hwa Chung*

Abstract. In this paper, we introduce a concept of a weak dis-
tance and show that AP is a bireflective subcategory of WD. More-
over, we introduce a concept of a co-tower which is an equivalent
description of approach spaces.

1. Introduction

In order to study the ”approximation structure,” various structures
such as topological structures, quasi-metric spaces, quasi-uniform spaces,
uniform spaces, convergence structures have been introduced. The nat-
ural question is whether there is one setting under which the above
structures can be studied. There have been at least three conceptual
approaches, namely syntopogenous structures introduced by Császár[2],
nearness structures by Herrlich[4] and approach structures by Lowen
[7]. These new structures or constructs should contain old ones as well-
behaved subconstructs like reflective or coreflective subconstructs.

The main idea behind approach system is to axiomatize the notion of
distance between points and sets in such a way as to generalize both the
∞-metric and topological situations. The concept of distance is most
closely related to the concept of a κ-metric as introduced by Shchepin[9].
In [8], seven distinct but equivalent ways to axiomatize an approach
space are given and in [7] Lowen showed that Top is bireflective and
bicorefective in AP and pqMET∞ is bicoreflective in AP .

In this paper, we introduce a concept of a weak distance, which is
a generalization of a concept of approach space and show that AP is a
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bireflective subcategory of WD. Moreover, we introduce a concept of a
co-tower which is an equivalent description of approach spaces.

The rest of this paper is organized as follows. In section 2, we inves-
tigate approach spaces from the view of conceptual aspects. In section
3, we introduce a concept of a weak distance and investigate approach
spaces from the view of categorical aspects. In section 4, we charac-
terize approach space via interior operators and introduce a concept of
co-towers which is equivalent with the concept of towers.

For the general background of approach spaces and∞pq-metric spaces,
we refer to [8] and for the category theory, we refer to [1] and [5]. In
what follows, given a set X we denote its power set by 2X . ∨ stands for
supremum and ∧ stands for infimum.

2. Preliminaries

In this section, we investigate approach spaces from the view of con-
ceptual aspects.

For a set X and a function

δ : X × 2X −→ [0,∞]

consider the following properties;

(A1) for each x ∈ X, δ(x, x) = 0,
(A2) δ(x, ∅) = ∞,
(A3) for each x ∈ X and ϑ ⊆ 2X , δ(x,∪ϑ) = ∧{δ(x,A) : A ∈ ϑ},
(A4) for each x ∈ X and A,B ⊆ 2X δτ (x,A ∪B) = δτ (x,A) ∧ δτ (x,B),
(A5) for x, y, z ∈ X, δ(x, {y}) ≤ δ(x, {z}) + δ(z, {y}),
(A6) ∀x ∈ X, ∀A ∈ 2X ,∀k ∈ [0,∞]: δ(x,A) ≤ δ(x,A(k)) + k, where

A(k) = {x ∈ X : δ(x,A) ≤ k},
(A7) ∀x ∈ X, ∀A,B ∈ 2X , δ(x,A) ≤ δ(x,B) + ∨b∈Bδ(b, A),
(A8) if δ(x,A) > 0, then there is a subset G ⊆ X such that x ∈ G and

for any g ∈ G, δ(g,X −G ∪A) > 0,
(A9) if B ⊆ A ⊆ X, then for any x ∈ X,

δ(x,A) ≤ δ(x,B).

The following proposition contains some simple but fundamental prop-
erties which we will use implicitly in the sequel.

Proposition 2.1. For a function δ : X × 2X −→ [0,∞], one has the
following:

(1) (A5) and (A3) imply (A7).
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(2) (A7) implies (A5).
(3) (A6) and (A9) imply (A7).
(4) (A7) implies (A6).

Proof. (1) Take any x ∈ X and A,B ⊆ 2X , then for each z ∈ A and
y ∈ B,

δ(x, z) ≤ δ(x, y) + δ(y, z)

and then
δ(x,A) ≤ δ(x, y) + δ(y,A)

and hence
δ(x,A) ≤ δ(x,B) + ∨y∈Bδ(y,A).

(2) it is founded in [7].
(3) it is founded in [8].
(4) Take any k ∈ [0,∞], A ∈ 2X , then by assumption,

δ(x,A) ≤ δ(x,A(k)) + ∨a∈A(k)δ(a,A)

and so
δ(x,A) ≤ δ(x,A(k)) + ϵ

for ∨{δ(a,A) : a ∈ A(k)} ≤ k.

By the above proposition if a function δ : X × 2X → [0,∞] satisfies
(A3), then (A5), (A6) and (A7) are equivalent with each other, because
δ satisfies (A3) and hence it satisfies (A9). It is clear that (A8) is
equivalent with the property: for any x ∈ X and A ∈ 2X ,

δ(x,A) = δ(x,A(0))

Hence (A6) implies (A8). Finally, a function δ : X × 2X → [0,∞]
satisfies (A7) if and only if it satisfies the following : for any x ∈ X and
A,B ⊆ 2X ,

∧y∈B[δ(x,A)− δ(y,A)] ≤ δ(x,B).

Definition 2.2. ([8]) A function d : X × X → [0,∞] is called an
extended pseudo-quasi-metric (shortly ∞pq-metric) on X if it satisfies
the following properties: for all x, y, z ∈ X,

(M1) d(x, x) = 0,
(M2) d(x, y) ≤ d(x, z) + d(z, y).

Proposition 2.3. ([8]) Let (X, dX) and (Y, dY ) be∞pq-metric spaces,
then a function f : X → Y is said to be nonexpansive if it fulfills the
property

dY (f(x), f(y)) ≤ dX(x, y) ∀x, y ∈ X.
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pqMET∞ denotes the category of ∞pq-metric spaces and nonexpan-
sive functions.

The following is an internal characterization of ∞pq-metric.

Proposition 2.4. A function d : X ×X → [0,∞] is a ∞pq-metric if
and only if there is a function

δd : X × 2X → [0,∞]

satisfying properties: (A1), (A2), (A3), (A6) and for any x, y ∈ X,
δd(x, y) = d(x, y)

Proof. For any x ∈ X and A ∈ 2X , let δd(x,A) = ∧{d(x, a) : a ∈ A}
then it is easy to show that it satisfies all the properties. The converse
is clear.

The following is an internal characterization of topology:

Proposition 2.5. A subfamily τ ⊆ 2X is a topology on X if and
only if there is a function

δτ : X × 2X → {0,∞}
satisfying properties: (A1), (A2), (A4), (A6) and G ∈ τ if and only if
for any g ∈ G, δτ (g,X −G) > 0

Proof. The function δτ : X × 2X → {0,∞} defined by

δτ (x,A) =

{
0 x ∈ clτ (A)
∞ x /∈ clτ (A).

satisfies all the properties. The converse is clear.

Remark 2.6. (1) A subfamily τ ⊆ 2X is a finitely generated topology
on X if and only if there is a function

δτ : X × 2X → {0,∞}
satisfying properties: (A1), (A2), (A3), (A6) and G ∈ τ if and only if
for any g ∈ G, δτ (g,X −G) > 0.

(2) Every ∞pq-metric satisfies the property (A3), but not topology.
(3) Topology and ∞pq-metric have properties (A1), (A2), (A4) and

(A6) in common with each other.

The following is due to Lowen.

Definition 2.7. A function δ : X × 2X → [0,∞] is called a distance
on X if it satisfies properties (A1), (A2), (A4) and (A6).

By the preceding remark, every distance is both topology and ∞pq-
metric.



Weak distances 539

3. Relationship between AP and WD

In this section, we introduce a concept of a weak distance and inves-
tigate approach spaces from the view of categorical aspects. In the last
section we observed that topology and ∞pq-metric have the properties
(A1), (A2), (A4), (A5) and (A8) in common with each other. From this
observation, we have the following definition:

Definition 3.1. A function δ : X×2X → [0,∞] is said to be a weak
distance on X if it satisfies properties (A1), (A2), (A4), (A5) and (A8).
The pair (X, δ) is called a weak distance space (or simply, wd-space).

By Proposition 2.1 and the preceding remark, every weak distance is
also both topology and ∞pq-metric and the concept of weak distances
is weaker than that of distances.

Theorem 3.2. Every approach space is a wd-space.

Proof. It is immediate from Definitions 2.7 and 3.1.

Remark 3.3. If X is a finite set, then a function δ : X×2X → [0,∞]
is a distance on X if and only if it is a weak distance on X.

Definition 3.4. Let (X, δX) and (Y, δY ) be wd-spaces, then a func-
tion f : X → Y is said to be:

(1) a contraction if it fulfills the property:
δY (f(x), f(A)) ≤ δX(x,A) ∀x ∈ X,A ∈ 2X

(2) an isomorphism if it is a 1-1 correspondence and both f and
the inverse function of f are contractions.

Theorem 3.5. For wd-spaces X,Y and Z, the following holds:
(1) The identity function idX : X → X is a contraction.
(2) For contractions f : X → Y and g : Y → Z, the composition

g ◦ f : X → Z is again a contraction.

Theorem 3.6. Let X be a set and (Y, α) a wd-space and f : X → Y
a function. Then the function

δα : X × 2X → [0,∞] : (x,A) → α(f(x), f(A))

satisfies the following:
(1) δ is a weak distance on X
(2) For any weak distance space (Z, η), a function g : (Z, η) → (X, δ)

is a contraction if and only if f ◦ g : (Z, η) → (Y, α) is a contraction.
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Proof. (1) For any x ∈ X, α(f(x), f(x)) = 0 and so δ(x, x) = 0. Take
any x, y, z ∈ X, then α(f(x), f(y)) ≤ α(f(x), f(z)) + α(f(z), f(y)) and
so δ(x, y) ≤ δ(x, z) + δ(z, y). Since f(∅) = ∅ and α(f(x), f(∅)) = ∞ ,
δ(x, ∅) = ∞. Take any A,B ∈ 2X , then

δ(x,A ∪B)

= α(f(x), f(A ∪B))

= δ(x,A) ∧ δ(x,B).

Suppose δ(x,A) > 0, then α(f(x), f(A)) > 0 and so there is a subsetG ⊇
Y such that f(x) ∈ G and for any g ∈ G, α(g, f(A)) > 0 and α(g, Y −
G) > 0. Take any a ∈ f−1(G), then f(a) ∈ G and so α(f(a), f(A)) > 0.
Thus δ(a,A) > 0. Since f(X − f−1(G)) ⊆ Y − G, for any a ∈ f−1(G),
one has the following:

0 < α(f(a), Y −G) ≤ α(f(a), f(X − f−1(G))) = δ(a,X − f−1(G))

Hence 0 < δ(a,X − f−1(G)). In all, δ is a weak distance on X.
(2) Suppose g : (Z, η) → (X, δ) is a contraction, Since f : (X, δ) →

(Y, α) is a contraction, by Theorem 3.5 f ◦ g : (Z, η) → (Y, α) is a
contraction. Suppose f ◦ g : (Z, η) → (Y, α) is a contraction, then
α(f ◦g(z), f ◦g(A)) ≤ η(z,A). Since α(f ◦g(z), f ◦g(A)) = δ(g(z), g(A)),
δ(g(z), g(A)) ≤ η(z,A) and hence g is a contraction.

WD denotes the category of wd-spaces and contractions.

AP denotes the category of approach spaces and contractions.

The following is immediate from Theorem 3.2:

Theorem 3.7. AP is a full isomorphism-closed subcategory of WD.

pqMET∞(X) denotes the set of all ∞pq-metric on a set X.

Definition 3.8. ([8]) A subset ς of pqMET∞(X) is called a gauge
if it ia an ideal in pqMET∞(X) which fulfills following propetry:

If ∀x ∈ X, ∀k > 0,∀ω < ∞ : ∃dk,ωx ∈ ς sucht that d(x, ·)∧ω ≤ dk,ωx (x, ·)+
k, then d ∈ ς.

Definition 3.9. ([8]) A subset φ of pqMET∞(X) is called a gauge
basis if it is an ideal bais in pqMET∞(X).

Theorem 3.10. ([8]) If δ : X × 2X → [0,∞] is a distance, then

ςδ = {d ∈ pqMET∞(X) : ∀A ⊂ X, ∀x ∈ X : ∧a∈Ad(x, a) ≤ δ(x,A)}

is a gauge on X.
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The ςδ in the above theorem is called the associated gauge with δ.

In the following lemma, we will show that the associated gauge ςδ
with a weak distance δ is a non-empty set.

Lemma 3.11. (1) If δ : X × 2X → [0,∞] is a weak distance, then the
following ∞pq-metrics is in ςδ.

dlY (x, y) = [δ(x, Y )∧ (∧u∈X−Y δ(u, Y ))− δ(y, Y )∧ (∧u∈X−Y δ(u, Y ))]∨ 0

(2) If δ : X×2X → [0,∞] is a distance, then the following∞pq-metric
is in ςδ

duY (x, y) = [δ(x, Y )− δ(y, Y )] ∨ 0

In particular, ∧a∈Y d
u
Y (x, a) = δ(x, Y )

Proof. (1) For any A ∈ 2X and x ∈ X,

∧a∈Ad
l
Y (x, a) =


0 if x ∈ Y
∧u∈X−Y δ(u, Y ) if x /∈ Y and A ⊆ Y
0 if x /∈ Y and A ⊆ X − Y
0 if x /∈ Y and A ̸= ∅.

Hence ∧a∈Ad
l
Y (x, a) ≤ δ(x,A) for A ⊆ Y. Thus dlY is in ςδ.

(2) It follows from Proposition 2.1 that for any A ∈ 2X and x ∈ X,

∧a∈Ad
u
Y (x, a) = [∧a∈A[δ(x, Y )− δ(a, Y )]] ∨ 0 ≤ δ(x,A).

Thus duY is in ςδ. The particular part is immediate from the fact that
for any a ∈ Y, δ(a, Y ) = 0.

Note that Lowen proved Theorem 3.10 without using the axiom (A6)
in [7]. Using the above lemma, one has the following theorem.

Theorem 3.12. δ : X × 2X → [0,∞] is a weak distance, then

ς = {d ∈ pqM∞(X) : ∀A ⊂ X, ∀x ∈ X : ∧a∈Ad(x, a) ≤ δ(x,A)}
is a gauge on X.

Proof. This goes along the same lines as Theorem 3.10.

The following is now an immediate consequent of Lemma 3.11 and the
above theorem.

Theorem 3.13. ([8]) If δ : X×2X → [0,∞] is a distance and ς is the
associated gauge, then we have

δ(x,A) = ∨d∈ς ∧a∈A d(x, a)∀x ∈ X, ∀A ⊂ X



542 Se Hwa Chung

Theorem 3.14. ([8]) If a subset ς of pqMET∞(X) is a gauge on X
and δ is the associated distance, then

ς = {d ∈ pqM∞(X) : ∀A ⊂ X, ∀x ∈ X : ∧a∈Ad(x, a) ≤ δ(x,A)}.
Theorem 3.15. ([8]) If (X, δ) and (Y, α) are distance spaces, then a

function f : X → Y is a contraction if and only if ∀d ∈ ςα : d◦(f×f) ∈ ςδ.

δg denotes the distance associated with the gauge ςδ. The combined
results of 3.10, 3.11, 3.13, and 3.14 prove that distance and gauge are
equivalent with each other and that δg = δ if δ is a distance, and the
weak distance associated with gauge is a distance. Using this notations,
we have the following:

Theorem 3.16. AP is a bireflective subcategory of WD. For any
weak distance space (X, δ), its AP -bireflection is given by

idX : (X, δ) → (X, δg).

Proof. It is easily verified that idX : (X, δ) → (X, δg) is a contraction.
Now suppose that (Y, η) is a approach space and f : (X, δ) → (Y, η) is a
contraction. Firstly, we show that f : (X, ςη) → (Y, ςδ) is a contraction.
Indeed, take any d ∈ ςη then

∨d∈ςη ∧a∈A d(f(x), f(a)) ≤ η(f(x), f(A)).

Since f : (X, δ) → (Y, η) is a contraction,∨d∈ςη ∧a∈A d(f(x), f(a)) ≤
δ(x,A) and hence for any x ∈ X and A ∈ 2X

∧a∈Ad(f(x), f(a)) ≤ δ(x,A).

Thus d ◦ (f × f) ∈ ςδ. By Theorem 3.15, f : (X, δg) → (Y, ηg) is a
contraction and so f : (X, δg) → (Y, η) is a contraction.

Collecting the above theorems, we have the following:

Theorem 3.17. A weak distance δ on a set X is a distance if and
only if the identity function idX : (X, δ) → (X, δg) is an isomorphism.

4. Co-towers

In this section, we characterize approach space via interior opera-
tor and introduce a concept of co-towers, which is equivalent with the
concept of towers. It is worth noting that in topological spaces, the
complement of the interior of a set is equal to the closure of the comple-
ment of the set and in an approach space (X, δ), A(0) is interpreted as
the closure of the set A.
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Theorem 4.1. Let (X, δ) and (Y, α) be distance spaces and f : X →
Y be a function then following are equivalent:

(1) f : (X, δ) → (Y, α) is a contraction.
(2) ∀x ∈ X, ∀G ∈ 2Y : α(f(x), Y −G) ≤ δ(x,X − f−1(G)).

Proof. (1) ⇒ (2) Take any x ∈ X and G ∈ 2Y , then

α(f(x), Y −G)

≤ α(f(x), f(X − f−1(G)))

≤ δ(x,X − f−1(G)),

because f : (X, δ) → (Y, α) is a contraction and f(X − f−1(G)) ⊆
Y −G. Thus

α(f(x), Y −G) ≤ δ(x,X − f−1(G))

(2) ⇒ (1) Take any x ∈ X and A ∈ 2X , then

α(f(x), f(A))

≤ δ(x,X − f−1(Y − f(A))

≤ δ(x,A),

because f−1(Y − f(A)) ⊆ X −A. Thus α(f(x), f(A)) ≤ δ(x,A) and so
f is a contraction.

Theorem 4.2. A function δ : X × 2X → [0,∞] is a distance if and
only if it satisfies the following :

(I1) δ(x, ∅) = ∞
(I2) 0 < δ(x,A) implies x ∈ X −A,
(I3) for any x ∈ X and A,B ∈ 2X , δ(x,A ∪B) = δ(x,A) ∧ δ(x,B),
(I4) If k < δ(x,A) then there is a subset G ⊆ X such that δ(x,A) ≤

δ(x,X −G) + k and for any g ∈ G, k < δ(g,A).

Proof. To show the only-if part it is suffices to show that it satisfies
axioms (I2) and (I4). To show that it satisfies (A1), take any x ∈ X
and suppose δ(x, x) > 0 then by (I2), x ∈ X −x, which is a contraction,
Hence δ(x, x) = 0 and so δ satisfies (A1). To show that it satisfies (A6),
suppose k ∈ [0,∞) and k < δ(x,A), then, by (I4), there is a subset G of
X such that δ(x,A) ≤ δ(x,X −G) + k and for any g ∈ G, k < δ(g,A).
Then G ⊆ X −Ak and so by the above lemma

δ(x,X −G) ≤ δ(x,A(k)).

Since δ(x,A) ≤ δ(x,X −G) + k, δ(x,A) ≤ δ(x,A(k)) + k. To show that
if part, take any x ∈ X and A ∈ 2X and suppose 0 < δ(x,A) and x ∈ A,
then by axioms (A1) and (A5), δ(x,A) = 0, which is a contraction.
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Hence x ∈ X − A and so δ satisfies (I2). Suppose k < δ(x,A) then by

(A6), δ(x,A) ≤ δ(x,A(k))+ k, then δ(x,A) ≤ δ(x,X −G)+ k. If g ∈ G,
then g /∈ Ak and hence k < δ(g,A).

We already mentioned that there are several equivalent descriptions
of distance. The following is one of them.

Definition 4.3. ([8]) A family of functions

tk : 2X → 2X(k ∈ [0,∞))

is called a tower on X if it satisfies the following axioms:

(T1) ∀A ∈ 2X ,∀k ∈ [0,∞) : A ⊆ tk(A),
(T2) ∀k ∈ [0,∞) : tk(∅) = ∅,
(T3) ∀A,B ∈ 2X ,∀k ∈ [0,∞) : tk(A ∪B) = tk(A) ∪ tk(B),
(T4) ∀A ∈ 2X ,∀k, l ∈ [0,∞) : tk+l(A) = tk(tl(A)),
(T5) ∀A ∈ 2X ,∀k ∈ [0,∞) : tk(A) = ∩k<ltl(A).

Let X be a set and δ : X × 2X → [0,∞] a function. Then for any
A ∈ 2X and k ∈ [0,∞),

X −A(k) = (X −A)(k)

where A(k) = {x ∈ A : δ(x,X − A) > k}. Using this fact and notation,
we have the following definition:

Definition 4.4. A family of functions

ik : 2X → 2X(k ∈ [0,∞))

is called a co-tower on X if it satisfies the following axioms:

(CT1) ∀A ∈ 2X ,∀k ∈ [0,∞) : ik(A) ⊆ A
(CT2) ∀k ∈ [0,∞) : ik(X) = X
(CT3) ∀A,B ∈ 2X ,∀k ∈ [0,∞) : ik(A ∩B) = ik(A) ∩ ik(B)
(CT4) ∀A ∈ 2X ,∀k, l ∈ [0,∞) : ik+l(A) = ik(il(A))
(CT5) ∀A ∈ 2X ,∀k ∈ [0,∞) : ik(A) = ∪k<lil(A)

Notice that by (CT3) and (CT5) we have

∀A ⊆ B ⊆ X, ∀l ≤ k : ik(A) ⊆ il(B).

Theorem 4.5. (tk)k∈[0,∞) is a tower on a set X, then the family
(ik)k∈[0,∞) defined by

ik : 2X → 2X : A → X − tk(X −A)

is a co-tower on X.
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Proof. It is immediate from Definitions 4.3 and 4.4.

Theorem 4.6. (ik)k∈[0,∞) is a co-tower on a set X, then the family
(tk)k∈[0,∞) defined by

tk : 2X → 2X : A → X − ik(X −A)

is a tower on X.

Proof. It is immediate from Definitions 4.3 and 4.4.

Theorem 4.7. ([8]) Let (X, δ) and (Y, α) be distance spaces and
f : X → Y be a function, then the following are equivalent:

(1) f : (X, δ) → (Y, α) is a contraction.
(2) ∀A ∈ 2X ,∀k ∈ [0,∞) : f(tδk(A)) ⊆ tαk (f(A)).

Theorem 4.8. A function f : (X, δ) → (Y, α) is a contraction if and
only if for any A ∈ 2X and k ∈ [0,∞) : f(X − iδk(A)) ⊆ Y − iαk (f(A)).

Proof. Take any A ∈ 2X and, then it follows from the above theorems
that k ∈ [0,∞).

f(X − iδk(A))

⊆ f(tδk(X −A)) ⊆ tαk (f(X −A)) ⊆ tαk (Y − f(A))

= Y − iαk (f(A)).

The if-part is similar to the only-if part.

Collecting all the above, we have the following:

Corollary 4.9. Towers and co-towers are equivalent systems and
hence the concept of co-towers is equivalent with that of distances.
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