SOME GEOMETRIC CONSEQUENCES OBTAINED FROM PARTIAL ELIMINATION IDEALS

Jeaman Ahn*

Abstract

In [9], M. Green introduced the partial elimination ideals defining the multiple loci of the projection image of a closed subscheme in \mathbb{P}^{n}. In this paper, we give some geometric consequences obtained from partial elimination ideals.

1. Introduction

Let V be a vector space of dimension $n+1$ over an algebraically closed field k of characteristic zero with basis x_{0}, \ldots, x_{n}. If X is a nondegenerate reduced closed subscheme in $\mathbb{P}_{k}^{n}=\mathbb{P}(V)$ we write I_{X} for the saturated defining ideal of X in the coordinate ring $R=k\left[x_{0}, \ldots, x_{n}\right]$ of $\mathbb{P}(V)$. If W is a subspace of V with a basis x_{t}, \ldots, x_{n} we write S_{t} for the symmetric algebra $\operatorname{Sym}(W)=k\left[x_{t}, x_{t+1} \ldots, x_{n}\right]$. Let Λ be a linear subvariety in $\mathbb{P}_{k}^{n}=\mathbb{P}(V)$ with homogeneous coordinates x_{0}, \ldots, x_{t-1}.

If we consider an outer projection of X from the center Λ

$$
\pi_{\Lambda}: X \rightarrow \mathbb{P}_{k}^{n-t}=\mathbb{P}(W)
$$

then the simplest question one could ask about the projection $\pi_{\Lambda}: X \rightarrow$ \mathbb{P}_{k}^{n-t} is the following: what can be said about the set of fibers?, or what sort of set is the image? These questions are the beginning of elimination theory (see [1], [2], [3], [5], [7], [9], [10]).

Partial elimination ideals which have been introduced by M. Green ([9]) can be used to study this kind of questions. Through the use of partial elimination ideals, these can be changed to questions about homogeneous ideals in polynomials rings (see [3], [4]).

[^0]This paper is devoted to investigate some geometric consequences obtained from partial elimination ideals. We will focus on the following free presentation:

$$
\bigoplus S_{1}(-j)^{\oplus \beta_{1, j}} \xrightarrow{\varphi_{1}} \bigoplus S_{1}(-j)^{\oplus \beta_{0, j}} \xrightarrow{\varphi_{0}} R / I_{X} \rightarrow 0 .
$$

We give a geometric meaning of the kernel of the map φ_{0} (Theorem 3.4) by showing that the kernel of φ_{0} is deeply related to partial elimination ideals (Proposition 3.3). These results show a relationship between partial elimination ideals and projection images of X. As an application, we recover that multiple locus of projections are defined by partial elimination ideals set-theoretically, which is given by M. Green in [9].

2. Preliminaries

In this section we recall some notations and definitions which will be used throughout the remaining part of the paper.

Let $R=k\left[x_{0}, \ldots, x_{n}\right]$ where k is an algebraically closed field of characteristic zero. For an element $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$, we let x^{α} denote $x_{0}^{\alpha_{0}} \cdots x_{n}^{\alpha_{r}}$. Note that an ordering $>$ on $\mathbb{Z}_{\geq 0}^{n+1}$ gives us an ordering on monomials in R.

The graded lexicographic order (grlex order for short) is a typical example of orderings on n-tuples.

Definition 2.1. ([2], [3], [4]) Let α and β be elements in $\mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grlex }} \beta$ if $\operatorname{deg}\left(x^{\alpha}\right)>\operatorname{deg}\left(x^{\beta}\right)$, or
(a) $\operatorname{deg}\left(x^{\alpha}\right)=\operatorname{deg}\left(x^{\beta}\right)$
(b) the leftmost nonzero entry of $\alpha-\beta$ is positive.

There is a notion of regularity for sheaves on projective spaces due to David Mumford that generalizes the idea of Castelnuovo. A closely related notion for graded modules arises naturally in the study of finite free resolutions and we present it here.

Definition 2.2. ([6], [7], [8]) For an $(n+1)$-dimensional k-vector space V with basis x_{0}, \ldots, x_{n}, we form the symmetric algebra $R=$ $\operatorname{Sym}(V)=k\left[x_{0}, \ldots, x_{n}\right]$.
(a) For a finitely generated graded R-module $M=\bigoplus_{\ell \geq 0} M_{\ell}$, consider a minimal free resolution

$$
\cdots \rightarrow \bigoplus_{j} R(-i-j)^{\beta_{i, j}(M)} \rightarrow \cdots \rightarrow \bigoplus_{j} R(-j)^{\beta_{0, j}(M)} \rightarrow M \rightarrow 0
$$

of M as a graded R-modules. Thus $\beta_{i, j}^{R}(M):=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}(M, k)_{i+j}$. We say that M is m-regular if $\beta_{i, j}(M)=0$ for all $i \geq 0$ and $j \geq m$. The Castelnuovo-Mumford regularity of M is defined by

$$
\operatorname{reg}(M):=\min \{m \mid M \text { is } m \text {-regular }\} .
$$

(b) For a coherent sheaf \mathcal{M} on $\mathbb{P}(V)$, let $M=\bigoplus_{\ell \in \mathbb{Z}} H^{0}(\mathcal{M}(\ell))$ be its associated graded R-module. Then we write

$$
\operatorname{reg}(\mathcal{M}):=\min \left\{m \mid H^{i}(\mathcal{M}(m-i))=0 \text { for all } i \geq 1\right\} .
$$

In this case, it is well known that $\operatorname{reg}(M)=\operatorname{reg}(\mathcal{M})($ see $[6])$.
For a proof of main theorem, we need the following lemma.
Lemma 2.3. If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of graded finitely generated R-modules, then
(a) $\operatorname{reg}(A) \leq \max \{\operatorname{reg}(B), \operatorname{reg}(C)+1\}$,
(b) $\operatorname{reg}(B) \leq \max \{\operatorname{reg}(A), \operatorname{reg}(C)\}$,
(c) $\operatorname{reg}(C) \leq \max \{\operatorname{reg}(A)-1, \operatorname{reg}(B)\}$.

Proof. See Corollary 20.19 in [7] for a proof.

3. Partial elimination ideals

In this section we define the partial elimination ideals and describe their basic algebraic and geometric properties. Let $\pi_{q}: X \rightarrow Y \subset \mathbb{P}^{n-1}$ be an outer projection from the center $q=[1: 0: \cdots: 0]$. For the degree lexicographic order, if $f \in I_{X}$ has leading term $\operatorname{in}(f)=x_{0}^{d_{0}} \cdots x_{n}^{d_{n}}$, we set $d_{0}(f)=d_{0}$, the leading power of x_{0} in f. Then it is well known that

$$
I_{Y}=\bigoplus_{m \geq 0}\left\{f \in\left(I_{X}\right)_{m} \mid d_{0}(f)=0\right\}=I_{X} \cap S
$$

More generally, one can define partial elimination ideals of I_{X}, which was given by M. Green in [9].

Definition 3.1 ([9]). Let $I_{X} \subset R$ be a homogeneous ideal of X and let

$$
\tilde{K}_{i}\left(I_{X}\right)=\bigoplus_{m \geq 0}\left\{f \in\left(I_{X}\right)_{m} \mid d_{0}(f) \leq i\right\} .
$$

If $f \in \tilde{K}_{i}\left(I_{X}\right)$, we may write uniquely $f=x_{0}^{i} \bar{f}+g$ where $d_{0}(g)<i$. Now we define $K_{i}\left(I_{X}\right)$ by the image of $\tilde{K}_{i}\left(I_{X}\right)$ in S under the map $f \mapsto \bar{f}$ and we call $K_{i}\left(I_{X}\right)$ the i-th partial elimination ideal of I_{X}.

REmARK 3.2. (a) If we let $S=k\left[x_{1}, \ldots, x_{n}\right]$ then $\tilde{K}_{k}(I)$ and $K_{k}(I)$ are graded S-modules. Note that $\tilde{K}_{k}(I)$ is not a graded R-module in general.
(b) Let $P=\left(x_{1}, \ldots, x_{n}\right)$ be the defining ideal of a point $p=[1: 0$: $\cdots: 0]$. For a reduced closed subscheme X in \mathbb{P}^{n}, if we write I_{X} for the defining ideal of X then note that $f \in \tilde{K}_{k}\left(I_{X}\right)_{d}$ if and only if $f \in P^{d-k}$ if and only if $\operatorname{mult}_{p}(f) \geq d-k$. This result follows directly from the fact that
(i) $\operatorname{mult}_{p}(f)$ is the length of $R /(f) \otimes R_{P}$
(ii) the length of $\left(R / P^{d-k}\right) \otimes R_{P}$ is equal to $d-k$.

Proposition 3.3 and Theorem 3.4 are main results in this paper, which give a relationship between the partial elimination ideals and the geometry of the projection map from \mathbb{P}^{n} to \mathbb{P}^{n-1}.

Proposition 3.3. Let X be a reduced closed subscheme in \mathbb{P}^{n}. Suppose that $\pi_{q}: X \rightarrow Y \subset \mathbb{P}^{n-1}$ be a projection from the center $q=[1: 0 \cdots: 0]$. Then, as a S_{1}-module, there is a free presentation of R / I_{X}

$$
\bigoplus S_{1}(-j)^{\oplus \beta_{1, j}} \xrightarrow{\varphi_{1}} \bigoplus S_{1}(-j)^{\oplus \beta_{0, j}} \xrightarrow{\varphi_{0}} R / I_{X} \rightarrow 0
$$

such that the kernel of φ_{0} is $\tilde{K}_{d}\left(I_{X}\right)$ for some $d>0$.
Proof. Note that we can choose a homogeneous polynomial of the following form in the ideal I_{X} :

$$
f=x_{0}^{d+1}+x_{0}^{d} g_{d}+\cdots+x_{0} g_{1}+g_{0} \text { for some } d \geq 0
$$

where g_{i} is a homogeneous form of degree $d-i+1$ in $S_{1}=k\left[x_{1}, \ldots, x_{n}\right]$. This follows from the fact that $q \notin X$. From the definition of partial elimination ideals, we have the d-th partial elimination ideal $K_{d+1}\left(I_{X}\right)$ is $S_{1}=k\left[x_{1}, \ldots, x_{n}\right]$. Consider a graded S_{1}-module homomorphism $\phi_{0}: \oplus_{i=0}^{d} S(-i) \rightarrow R / I_{X}$ defined by $\phi_{0}\left(e_{i}\right)=x_{0}^{i}$ for each free basis e_{i} of $S(-i)$.

Now we claim that φ_{0} is surjective and the kernel of φ_{0} is $\tilde{K}_{d}\left(I_{X}\right)$. First, note that

$$
x^{d+1} \equiv x_{0}^{d} g_{d}+\cdots+x_{0} g_{1}+g_{0} \quad \bmod I_{X}
$$

Hence, this equation can be used to express every monomial x^{m} for $m \geq n$ modulo I_{X} in terms of monomials x^{α}, where $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $\alpha_{0} \leq d$. This implies that the S_{1}-module homomorphism ϕ_{0} is surjective.

Now let us prove $\operatorname{ker} \varphi_{0}=\tilde{K}_{d}\left(I_{X}\right)$. It suffices to show that $\operatorname{ker} \varphi_{0} \subset$ $\tilde{K}_{d}\left(I_{X}\right)$ since $\tilde{K}_{d}\left(I_{X}\right) \subset I_{X}$ and thus $\varphi_{0}\left(\tilde{K}_{d}\left(I_{X}\right)\right)$ is vanishing. Suppose that

$$
G=\left(g_{d}, \ldots g_{1}, g_{0}\right) \in \bigoplus_{i=0}^{d} S(-i)
$$

is an element in the kernel of φ_{0}. Then $\varphi_{0}(G)=x_{0}^{d} g_{d}+\cdots+x_{0} g_{1}+g_{0}$ has to be contained in I_{X} and thus

$$
\varphi_{0}(G) \in \tilde{K}_{d}\left(I_{X}\right)
$$

Consequently, we construct a free presentation of R / I_{X} as a S_{1}-module

$$
\bigoplus S_{1}(-j)^{\beta_{1, j}} \xrightarrow{\varphi_{1}} \bigoplus_{i=0}^{d} S_{1}(-j) \xrightarrow{\varphi_{0}} R / I_{X} \rightarrow 0
$$

and the kernel of φ_{0} is $\tilde{K}_{d}\left(I_{X}\right)$, as we wished.
Theorem 3.4. Let X be a reduced closed subscheme in \mathbb{P}^{n} and we write I_{X} for the defining ideal of X. If L is a line through the point $p=[1: 0 \cdots: 0]$ then we have

$$
L \subset Z\left(\tilde{K}_{k}\left(I_{X}\right)\right) \text { if and only if length }(L \cap X)>k .
$$

Proof. (\Leftarrow) : Suppose that $f \in \tilde{K}_{k}\left(I_{X}\right)_{d}$ and $p=[1: 0 \cdots: 0]$. Then we have $f \in P^{d-k}=\left(x_{1}, \ldots, x_{n}\right)^{d-k}$ and $\operatorname{mult}_{p}(f) \geq d-k$ by Remark 3.2. For a line L through the point p, if the length of intersections between X and L is at least $k+1$ then
$\operatorname{length}(Z(f) \cap L) \geq \operatorname{mult}_{p}(f)+$ length $(X \cap L) \geq(d-k)+(k+1)=d+1$.
Since f is a homogeneous polynomial of degree d, this implies that f is vanishing on L. Hence $L \subset Z\left(\tilde{K}_{k}\left(I_{X}\right)\right)$.
(\Rightarrow) Conversely, suppose that there is a line $L \subset Z\left(\tilde{K}_{k}\left(I_{X}\right)\right)$ passing through the point p with length $(X \cap L) \leq k$. Then it suffices to show that L is not contained in $Z\left(\tilde{K}_{k}\left(I_{X}\right)\right)$. This can be done if we prove that there is a polynomial $f \in \tilde{K}_{k}\left(I_{X}\right)_{d}$ such that f is not vanishing on the line L,

Now consider the following short exact sequence:

$$
\begin{equation*}
0 \rightarrow I_{X} \cap P^{d-k} \cap I_{L} \rightarrow I_{X} \cap P^{d-k} \rightarrow \frac{I_{X} \cap P^{d-k}}{I_{X} \cap P^{d-k} \cap I_{L}} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Let $Y=X \cup p^{d-k}$ be the disjoint union of a fat point p^{d-k} and X. Since we have

$$
\frac{I_{X} \cap P^{d-k}}{I_{X} \cap P^{d-k} \cap I_{L}}=\frac{I_{Y}}{I_{Y} \cap I_{L}} \cong \frac{\left(I_{Y}, I_{L}\right)}{I_{L}}
$$

and we can think of the ideal $\frac{\left(I_{Y}, I_{L}\right)}{I_{L}}$ as the defining ideal of collinear zero dimensional subscheme on the line L, we conclude that

$$
\begin{aligned}
\operatorname{reg}\left(\frac{I_{X} \cap P^{d-k}}{I_{X} \cap P^{d-k} \cap I_{L}}\right) & =\operatorname{reg}\left(\frac{I_{Y}+I_{L}}{I_{L}}\right) \\
& \leq \operatorname{deg}(Y) \\
& \leq \operatorname{length}(X \cap L)+(d-k) \\
& \leq d
\end{aligned}
$$

Since Y is the disjoint union of a fat point p^{d-k} and X, we have

$$
\operatorname{reg}(Y)=\max \left\{\operatorname{reg}(X), \operatorname{reg}\left(p^{d-k}\right)\right\} \leq d
$$

for all sufficiently large integer d. Consequently, by Lemma 2.3, we have

$$
\begin{aligned}
\operatorname{reg}(Y \cup L) & \leq \max \left\{\operatorname{reg}(Y), \operatorname{reg}\left(\frac{I_{X} \cap P^{d-k}}{I_{X} \cap P^{d-k} \cap I_{L}}\right)+1\right\} \\
& \leq d+1
\end{aligned}
$$

and thus $H^{1}\left(\mathbb{P}^{n}, \mathcal{I}_{L \cup X \cup P^{d-k}}(d)\right)=0$ for all $d \gg 0$.
By sheafifying (3.1), we have the following short exact sequence of sheaves

$$
0 \rightarrow \mathcal{I}_{L \cup X \cup P^{d-k}} \rightarrow \mathcal{I}_{X \cup P^{d-k}} \rightarrow \mathcal{I}_{X \cup P^{d-k} / L \cup X \cup P^{d-k}} \rightarrow 0
$$

and we conclude that, for all $d \gg 0$,

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{I}_{X \cup P^{d-k}}(d)\right) \rightarrow H^{0}\left(L \cup X \cup P^{d-k}, \mathcal{I}_{X \cup P^{d-k}}(d)\right)
$$

is surjective from the vanishing of $H^{1}\left(\mathbb{P}^{n}, \mathcal{I}_{L \cup X \cup P^{d-k}}(d)\right)=0$. Now choose a nonzero form \bar{f} in $H^{0}\left(L \cup X \cup P^{d-k}, \mathcal{I}_{X \cup P^{d-k}}(d)\right)$. If we write $f \in H^{0}\left(\mathbb{P}^{n}, \mathcal{I}_{X \cup P^{d-k}}(d)\right)$ for the preimage of \bar{f} then

$$
f \in H^{0}\left(\mathcal{I}_{X \cup P^{d-k}}(d)\right)=\left(I_{X} \cap P^{d-k}\right)_{d} \subset \tilde{K}_{k}\left(I_{X}\right)_{d} \text { for all } d \gg 0
$$

Then f is a homogeneous polynomial of degree d, which is not vanishing on L. This completes the proof.

As a Corollary, we recover Green's result in [9], which shows multiple locus of projections are defined by partial elimination ideals settheoretically.

Corollary 3.5 ([9]). Let X be a reduced subscheme of \mathbb{P}^{n} and let I_{X} be the homogeneous ideal of X. Let

$$
\pi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}
$$

be an outer projection from the point $p=[1: 0: \cdots: 0]$. Set theoretically, the m-th partial elimination ideal $K_{m}\left(I_{X}\right)$ is the ideal of $\left\{q \in \pi(X) \mid\right.$ length $\left.\left(\pi^{-1}(q)\right)>m\right\}$.

Proof. Let $Y_{m}=\left\{q \in \pi(Z) \mid \operatorname{length}\left(\pi^{-1}(q)\right)>m\right\}$. Then it is enough to show that

$$
Y_{m}=Z\left(K_{m}\left(I_{X}\right)\right)
$$

(\subset) : For a point $q=\left[0, a_{1}, \ldots, a_{n}\right] \in Y_{m}$, if $L=\overline{p q}$ be the line passing through p and q then we see $L \subset Z\left(\tilde{K}_{m}(I)\right)$ by Theorem 3.4. Let $q^{\prime}=\left[t, a_{1}, \ldots, a_{n}\right]$ be a point in L and let $f=x_{0}^{m} \bar{f}+g$ is a polynomial of $\tilde{K}_{m}(I)$. Since f is vanishing on the line L, we see that

$$
f\left(t, q_{1}, \ldots, q_{n}\right) \equiv 0 \text { for all } t \in k
$$

as a polynomial on the line L with leading coefficient $\bar{f}\left(q^{\prime}\right) \in k$. Hence we conclude that $\bar{f}\left(q^{\prime}\right)=0$ and this proves $q \in Z\left(K_{m}\left(I_{X}\right)\right)$.
(\supset): We will give a proof by induction on $m \geq 0$. Suppose that $q \in$ $Z\left(K_{k}\left(I_{X}\right)\right)$ and let L be the line passing through p and q. For $m=0$, if $f \in \tilde{K}_{0}\left(I_{X}\right)$ then f can be regarded as a polynomial in $K_{0}\left(I_{X}\right)$. Since $q \in Z\left(K_{0}\left(I_{X}\right)\right)$ and $f\left(q^{\prime}\right)=f(q)=0$ for all $q^{\prime} \in L$, we see that each polynomial in $\tilde{K}_{0}\left(I_{X}\right)$ is vanishing on L. Then we have $L \subset Z\left(\tilde{K}_{0}\left(I_{X}\right)\right)$ and thus it follows from Theroem 3.4 that length $(L \cap X)>0$. This proves length $\left(\pi^{-1}(q)\right)>0$.

Now suppose that $m>0$ and $q \in Z\left(K_{m}\left(I_{X}\right)\right)$. Since we have

$$
q \in Z\left(K_{m}\left(I_{X}\right)\right) \subset Z\left(K_{m-1}(I)\right)
$$

we see $\operatorname{mult}_{q}(\pi(Z))=\operatorname{length}(L \cap Z)>m-1$ by induction on m. Note that we have to show that $\operatorname{mult}_{q}(\pi(Z))=\operatorname{length}(L \cap Z)>m$. Now assume that

$$
\operatorname{mult}_{q}(\pi(Z))=\operatorname{length}(L \cap X) \leq m
$$

Then length $(L \cap Z)=m$ and there is a polynomial

$$
f=x_{0}^{m} \bar{f}+g \in \tilde{K}_{m}\left(I_{X}\right), \text { where } d_{0}(g) \leq m-1
$$

such that f does not vanishing on L by Theorem 3.4. If we write $q=\left[a_{1}, \ldots, a_{n}\right]$ then points on the line L can be parametrized by $\left[t, a_{1} \ldots, a_{n}\right]$. Note that \bar{f} is a polynomial in $K_{m}\left(I_{X}\right)$ and $q \in Z\left(K_{m}\left(I_{X}\right)\right)$. Hence we see

$$
f\left(t, a_{1} \ldots, a_{n}\right)=t^{m} \bar{f}(q)+g\left(t, a_{1} \ldots, a_{n}\right)=g\left(t, a_{1} \ldots, a_{n}\right)
$$

is a polynomial of degree $m-1$ in a polynomial ring $k[t]$. However,

$$
\text { length }(Z(f) \cap L) \geq \operatorname{length}(X \cap L)=m
$$

and this contradicts that f is not vanishing on the line L. Consequently, we prove length $(X \cap L)>m$ as we wished.

References

[1] J. Ahn, The degree-complexity of the defining ideal of a smooth integral curve. J. Symbolic Comput. 43 (2008), no. 6-7, 422-441.
[2] D. Bayer and D. Mumford, What can be computed in algebraic geometry? Computational algebraic geometry and commutative algebra (Cortona, 1991), 1-48, Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993.
[3] D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997.
[4] D. Cox, J. Little, and D. O'Shea, Using algebraic geometry. Graduate Texts in Mathematics, 185. Springer-Verlag, New York, 1998.
[5] A. Conca and J. Sidman, Generic initial ideals of points and curves. J. Symbolic Comput. 40 (2005).
[6] D. Eisenbud, The geometry of syzygies. A second course in commutative algebra and algebraic geometry. Graduate Texts in Mathematics, 229. Springer-Verlag, New York, 2005.
[7] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150. Springer-Verag, New York, 1995.
[8] D. Eisenbud and S. Goto. Linear free resolutions and minimal multiplicity, J. Algebra 88, 1984, 89-133.
[9] M. Green, Generic Initial Ideals, in Six lectures on Commutative Algebra, (Elias J., Giral J.M., Miró-Roig. R.M., Zarzuela S., eds.), Progress in Mathematics 166, Birkhäuser, 1998, 119-186.
[10] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 941-1006.
*
Department of Mathematics Education
Kongju National University
Chungnam 314-701, Republic of Korea
E-mail: jeamanahn@kongju.ac.kr

[^0]: Received May 09, 2010; Accepted August 30, 2010.
 2010 Mathematics Subject Classification: Primary 13C10; Secondary 14N05.
 Key words and phrases: partial elimination ideals, Castelnuovo-Mumford regularity, minimal free resolution, lexicographic term order.
 *This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0074704).

