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SOME GEOMETRIC CONSEQUENCES OBTAINED
FROM PARTIAL ELIMINATION IDEALS

Jeaman Ahn*

Abstract. In [9], M. Green introduced the partial elimination
ideals defining the multiple loci of the projection image of a closed
subscheme in Pn. In this paper, we give some geometric conse-
quences obtained from partial elimination ideals.

1. Introduction

Let V be a vector space of dimension n + 1 over an algebraically
closed field k of characteristic zero with basis x0, . . . , xn. If X is a
nondegenerate reduced closed subscheme in Pnk = P(V ) we write IX for
the saturated defining ideal of X in the coordinate ring R = k[x0, . . . , xn]
of P(V ). If W is a subspace of V with a basis xt, . . . , xn we write St for
the symmetric algebra Sym(W ) = k[xt, xt+1 . . . , xn]. Let Λ be a linear
subvariety in Pnk = P(V ) with homogeneous coordinates x0, . . . , xt−1.

If we consider an outer projection of X from the center Λ

πΛ : X → Pn−tk = P(W ),

then the simplest question one could ask about the projection πΛ : X →
Pn−tk is the following: what can be said about the set of fibers?, or what
sort of set is the image? These questions are the beginning of elimination
theory (see [1], [2], [3], [5], [7], [9], [10]).

Partial elimination ideals which have been introduced by M. Green
([9]) can be used to study this kind of questions. Through the use
of partial elimination ideals, these can be changed to questions about
homogeneous ideals in polynomials rings (see [3], [4]).
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This paper is devoted to investigate some geometric consequences
obtained from partial elimination ideals. We will focus on the following
free presentation:⊕

S1(−j)⊕β1,j
ϕ1−→
⊕

S1(−j)⊕β0,j
ϕ0−→ R/IX → 0.

We give a geometric meaning of the kernel of the map ϕ0 (Theorem 3.4)
by showing that the kernel of ϕ0 is deeply related to partial elimina-
tion ideals (Proposition 3.3). These results show a relationship between
partial elimination ideals and projection images of X. As an applica-
tion, we recover that multiple locus of projections are defined by partial
elimination ideals set-theoretically, which is given by M. Green in [9].

2. Preliminaries

In this section we recall some notations and definitions which will be
used throughout the remaining part of the paper.

Let R = k[x0, . . . , xn] where k is an algebraically closed field of char-
acteristic zero. For an element α = (α0, . . . , αn) ∈ Zn+1

≥0 , we let xα

denote xα0
0 · · ·xαr

n . Note that an ordering > on Zn+1
≥0 gives us an order-

ing on monomials in R.
The graded lexicographic order (grlex order for short) is a typical

example of orderings on n-tuples.

Definition 2.1. ([2], [3], [4]) Let α and β be elements in Zn≥0. We
say α >grlex β if deg(xα) > deg(xβ), or

(a) deg(xα) = deg(xβ)
(b) the leftmost nonzero entry of α− β is positive.

There is a notion of regularity for sheaves on projective spaces due
to David Mumford that generalizes the idea of Castelnuovo. A closely
related notion for graded modules arises naturally in the study of finite
free resolutions and we present it here.

Definition 2.2. ([6], [7], [8]) For an (n + 1)-dimensional k-vector
space V with basis x0, . . . , xn, we form the symmetric algebra R =
Sym(V ) = k[x0, . . . , xn].
(a) For a finitely generated graded R-module M =

⊕
`≥0M`, consider

a minimal free resolution

· · · →
⊕
j

R(−i− j)βi,j(M) → · · · →
⊕
j

R(−j)β0,j(M) →M → 0
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of M as a graded R-modules. Thus βRi,j(M) := dimk TorRi (M,k)i+j . We
say that M is m-regular if βi,j(M) = 0 for all i ≥ 0 and j ≥ m. The
Castelnuovo-Mumford regularity of M is defined by

reg(M) := min{m |M is m-regular}.
(b) For a coherent sheaf M on P(V ), let M =

⊕
`∈ZH

0(M(`)) be its
associated graded R-module. Then we write

reg(M) := min{m |H i(M(m− i)) = 0 for all i ≥ 1}.
In this case, it is well known that reg(M) = reg(M) (see [6]).

For a proof of main theorem, we need the following lemma.

Lemma 2.3. If 0 → A → B → C → 0 is a short exact sequence of
graded finitely generated R-modules, then

(a) reg(A) ≤ max{reg(B), reg(C) + 1},
(b) reg(B) ≤ max{reg(A), reg(C)},
(c) reg(C) ≤ max{reg(A)− 1, reg(B)}.

Proof. See Corollary 20.19 in [7] for a proof.

3. Partial elimination ideals

In this section we define the partial elimination ideals and describe
their basic algebraic and geometric properties. Let πq : X → Y ⊂ Pn−1

be an outer projection from the center q = [1 : 0 : · · · : 0]. For the degree
lexicographic order, if f ∈ IX has leading term in(f) = xd00 · · ·xdn

n , we
set d0(f) = d0, the leading power of x0 in f . Then it is well known that

IY =
⊕
m≥0

{
f ∈ (IX)m | d0(f) = 0

}
= IX ∩ S.

More generally, one can define partial elimination ideals of IX , which
was given by M. Green in [9].

Definition 3.1 ([9]). Let IX ⊂ R be a homogeneous ideal of X and
let

K̃i(IX) =
⊕
m≥0

{
f ∈ (IX)m | d0(f) ≤ i

}
.

If f ∈ K̃i(IX), we may write uniquely f = xi0f̄+g where d0(g) < i. Now
we define Ki(IX) by the image of K̃i(IX) in S under the map f 7→ f̄
and we call Ki(IX) the i-th partial elimination ideal of IX .
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Remark 3.2. (a) If we let S = k[x1, . . . , xn] then K̃k(I) and Kk(I)
are graded S-modules. Note that K̃k(I) is not a graded R-module in
general.
(b) Let P = (x1, . . . , xn) be the defining ideal of a point p = [1 : 0 :
· · · : 0]. For a reduced closed subscheme X in Pn, if we write IX for the
defining ideal of X then note that f ∈ K̃k(IX)d if and only if f ∈ P d−k
if and only if multp(f) ≥ d−k. This result follows directly from the fact
that

(i) multp(f) is the length of R/(f)⊗RP
(ii) the length of (R/P d−k)⊗RP is equal to d− k.

Proposition 3.3 and Theorem 3.4 are main results in this paper, which
give a relationship between the partial elimination ideals and the geom-
etry of the projection map from Pn to Pn−1.

Proposition 3.3. Let X be a reduced closed subscheme in Pn.
Suppose that πq : X → Y ⊂ Pn−1 be a projection from the center
q = [1 : 0 · · · : 0]. Then, as a S1-module, there is a free presentation of
R/IX ⊕

S1(−j)⊕β1,j
ϕ1−→
⊕

S1(−j)⊕β0,j
ϕ0−→ R/IX → 0,

such that the kernel of ϕ0 is K̃d(IX) for some d > 0.

Proof. Note that we can choose a homogeneous polynomial of the
following form in the ideal IX :

f = xd+1
0 + xd0gd + · · ·+ x0g1 + g0 for some d ≥ 0,

where gi is a homogeneous form of degree d− i+1 in S1 = k[x1, . . . , xn].
This follows from the fact that q /∈ X. From the definition of partial
elimination ideals, we have the d-th partial elimination ideal Kd+1(IX)
is S1 = k[x1, . . . , xn]. Consider a graded S1-module homomorphism
φ0 : ⊕di=0S(−i)→ R/IX defined by φ0(ei) = xi0 for each free basis ei of
S(−i).

Now we claim that ϕ0 is surjective and the kernel of ϕ0 is K̃d(IX).
First, note that

xd+1 ≡ xd0gd + · · ·+ x0g1 + g0 mod IX .

Hence, this equation can be used to express every monomial xm for
m ≥ n modulo IX in terms of monomials xα, where α = (α0, α1, . . . , αn)
and α0 ≤ d. This implies that the S1-module homomorphism φ0 is
surjective.
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Now let us prove kerϕ0 = K̃d(IX). It suffices to show that kerϕ0 ⊂
K̃d(IX) since K̃d(IX) ⊂ IX and thus ϕ0(K̃d(IX)) is vanishing. Suppose
that

G = (gd, . . . g1, g0) ∈
d⊕
i=0

S(−i)

is an element in the kernel of ϕ0. Then ϕ0(G) = xd0gd + · · ·+ x0g1 + g0

has to be contained in IX and thus

ϕ0(G) ∈ K̃d(IX).

Consequently, we construct a free presentation of R/IX as a S1-module

⊕
S1(−j)β1,j

ϕ1−→
d⊕
i=0

S1(−j) ϕ0−→ R/IX → 0,

and the kernel of ϕ0 is K̃d(IX), as we wished.

Theorem 3.4. Let X be a reduced closed subscheme in Pn and we
write IX for the defining ideal of X. If L is a line through the point
p = [1 : 0 · · · : 0] then we have

L ⊂ Z
(
K̃k(IX)

)
if and only if length(L ∩X) > k.

Proof. (⇐): Suppose that f ∈ K̃k(IX)d and p = [1 : 0 · · · : 0]. Then
we have f ∈ P d−k = (x1, . . . , xn)d−k and multp(f) ≥ d − k by Re-
mark 3.2. For a line L through the point p, if the length of intersections
between X and L is at least k + 1 then

length(Z(f)∩L) ≥ multp(f)+length(X ∩L) ≥ (d−k)+(k+1) = d+1.

Since f is a homogeneous polynomial of degree d, this implies that f is
vanishing on L. Hence L ⊂ Z

(
K̃k(IX)

)
.

(⇒) Conversely, suppose that there is a line L ⊂ Z
(
K̃k(IX)

)
passing

through the point p with length(X ∩ L) ≤ k. Then it suffices to show
that L is not contained in Z

(
K̃k(IX)

)
. This can be done if we prove

that there is a polynomial f ∈ K̃k(IX)d such that f is not vanishing on
the line L,

Now consider the following short exact sequence:

(3.1) 0→ IX ∩ P d−k ∩ IL → IX ∩ P d−k →
IX ∩ P d−k

IX ∩ P d−k ∩ IL
→ 0,
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Let Y = X ∪pd−k be the disjoint union of a fat point pd−k and X. Since
we have

IX ∩ P d−k

IX ∩ P d−k ∩ IL
=

IY
IY ∩ IL

∼=
(IY , IL)
IL

,

and we can think of the ideal (IY ,IL)
IL

as the defining ideal of collinear
zero dimensional subscheme on the line L, we conclude that

reg
(

IX ∩ P d−k

IX ∩ P d−k ∩ IL

)
= reg

(
IY + IL
IL

)
≤ deg(Y )

≤ length(X ∩ L) + (d− k)
≤ d.

Since Y is the disjoint union of a fat point pd−k and X, we have

reg(Y ) = max{ reg(X), reg(pd−k) } ≤ d

for all sufficiently large integer d. Consequently, by Lemma 2.3, we have

reg(Y ∪ L) ≤ max{reg(Y ), reg
(

IX ∩ P d−k

IX ∩ P d−k ∩ IL

)
+ 1}

≤ d+ 1,

and thus H1(Pn, IL∪X∪P d−k(d)) = 0 for all d� 0.
By sheafifying (3.1), we have the following short exact sequence of

sheaves

0→ IL∪X∪P d−k → IX∪P d−k → IX∪P d−k/L∪X∪P d−k → 0,

and we conclude that, for all d� 0,

H0(Pn, IX∪P d−k(d))→ H0(L ∪X ∪ P d−k, IX∪P d−k(d))

is surjective from the vanishing of H1(Pn, IL∪X∪P d−k(d)) = 0. Now
choose a nonzero form f̄ in H0(L ∪X ∪ P d−k, IX∪P d−k(d)). If we write
f ∈ H0(Pn, IX∪P d−k(d)) for the preimage of f̄ then

f ∈ H0(IX∪P d−k(d)) = (IX ∩ P d−k)d ⊂ K̃k(IX)d for all d� 0.

Then f is a homogeneous polynomial of degree d, which is not vanishing
on L. This completes the proof.

As a Corollary, we recover Green’s result in [9], which shows mul-
tiple locus of projections are defined by partial elimination ideals set-
theoretically.
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Corollary 3.5 ([9]). Let X be a reduced subscheme of Pn and let
IX be the homogeneous ideal of X. Let

π : Pn → Pn−1

be an outer projection from the point p = [1 : 0 : · · · : 0]. Set the-
oretically, the m-th partial elimination ideal Km(IX) is the ideal of{
q ∈ π(X) | length(π−1(q)) > m

}
.

Proof. Let Ym =
{
q ∈ π(Z) | length(π−1(q)) > m

}
. Then it is

enough to show that
Ym = Z

(
Km(IX)

)
(⊂): For a point q = [0, a1, . . . , an] ∈ Ym, if L = pq be the line passing
through p and q then we see L ⊂ Z

(
K̃m(I)

)
by Theorem 3.4. Let

q′ = [t, a1, . . . , an] be a point in L and let f = xm0 f̄ + g is a polynomial
of K̃m(I). Since f is vanishing on the line L, we see that

f(t, q1, . . . , qn) ≡ 0 for all t ∈ k,
as a polynomial on the line L with leading coefficient f̄(q′) ∈ k. Hence
we conclude that f̄(q′) = 0 and this proves q ∈ Z

(
Km(IX)

)
.

(⊃): We will give a proof by induction on m ≥ 0. Suppose that q ∈
Z
(
Kk(IX)

)
and let L be the line passing through p and q. For m = 0,

if f ∈ K̃0(IX) then f can be regarded as a polynomial in K0(IX). Since
q ∈ Z

(
K0(IX)

)
and f(q′) = f(q) = 0 for all q′ ∈ L, we see that each

polynomial in K̃0(IX) is vanishing on L. Then we have L ⊂ Z(K̃0(IX))
and thus it follows from Theroem 3.4 that length(L ∩ X) > 0. This
proves length(π−1(q)) > 0.

Now suppose that m > 0 and q ∈ Z
(
Km(IX)

)
. Since we have

q ∈ Z
(
Km(IX)

)
⊂ Z

(
Km−1(I)

)
,

we see multq(π(Z)) = length(L ∩ Z) > m− 1 by induction on m. Note
that we have to show that multq(π(Z)) = length(L ∩ Z) > m. Now
assume that

multq(π(Z)) = length(L ∩X) ≤ m.
Then length(L ∩ Z) = m and there is a polynomial

f = xm0 f̄ + g ∈ K̃m(IX), where d0(g) ≤ m− 1

such that f does not vanishing on L by Theorem 3.4. If we write
q = [a1, . . . , an] then points on the line L can be parametrized by
[t, a1 . . . , an]. Note that f̄ is a polynomial inKm(IX) and q ∈ Z

(
Km(IX)

)
.

Hence we see

f(t, a1 . . . , an) = tmf̄(q) + g(t, a1 . . . , an) = g(t, a1 . . . , an),
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is a polynomial of degree m− 1 in a polynomial ring k[t]. However,

length(Z(f) ∩ L) ≥ length(X ∩ L) = m

and this contradicts that f is not vanishing on the line L. Consequently,
we prove length (X ∩ L) > m as we wished.
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