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LOGARITHMIC CAPACITY UNDER CONFORMAL
MAPPINGS OF THE UNIT DISC

Bohyun Chung*

Abstract. If P (f, r) is the set of endpoints of radii which have
length greater than or equal to r > 0 under a conformal mapping
f of the unit disc. Then for large r, the logarithmic capacity of
P (f, r), 1

2
√

r
≤ cap(P (f, r)) ≤ k√

r
. Where k is the positive con-

stant.

1. Modulus and logarithmic capacity

The theory of modulus has been successfully applied to analytic func-
tions of a complex variable, and it has found application in the study of
conformal mappings.

Throughout this note, Ω = {z} will denote the complex plane, D is
a domain in Ω. And U is the unit disc in Ω. A curve γ : I → Ω is
a continuous mapping of an interval I. If we speak of a curve in D,
then we allow the endpoints of the curve to lie on ∂D. A curve γ in D
connects two sets A,B ⊆ D̄, if γ has one endpoint in A and one in B.
We denote by len(γ) the euclidean length of γ.

Definition 1.1. ([1]) The modulus mod(Γ) of a family Γ of locally
rectifiable curves(simply, curves or arcs) in a domain D is defined as

mod(Γ) = infρ

∫ ∫

D
ρ(z)2dm2(z).

Where m2 is two-dimensional Lebesque measure and infimum is taken
over all non-negative Borel measurable functions ρ that satisfy∫

γ
ρ(z)|dz| ≥ 1
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for all γ ∈ Γ, where |dz| means integration with respect to euclidean
arc-length. We shall call a function ρ(z) in D admissible in association
with Γ. Obviously 0 ≤ mod(Γ) ≤ ∞.

Proposition 1.2. ([9]) If Γ1 = {γ} is a curve family in some domain
D1, f : D1 → D2 is a conformal mapping and Γ2 is the curve family in
D2 consisting of the curves f ◦ γ, then

mod(Γ1) = mod(Γ2).

Example 1.3. Let T be a Jordan domain with three distinguished
boundary points and Γ the family of all curves in T which touch all three
sides, then

mod(Γ) =
1√
3
.

In fact, by Proposition 1.2, we begin by mapping conformally on an
equilateral triangle with side 1. The minimum length of γ ∈ Γ is that of
the altitude:

√
3/2. We set ρ = 2/

√
3. Then ρ is admissible in association

with Γ and it follows that mod(Γ) = (2/
√

3)2(
√

3/4) = 1/
√

3.

Example 1.4. Let R be a rectangle of sides a and b, Γ the family of
all curves in R which join the two sides of length a. Then

mod(Γ) =
a

b
.

In fact, since the minimum length of γ ∈ Γ is b, we set ρ = 1/b. Then
ρ is admissible in association with Γ, and we obtain mod(Γ) = a/b.

Definition 1.5. ([2]) Let E be a bounded Borel set in Ω, µ a positive
mass-distribution on E with total mass unity. Then

Uµ(z) =
∫

E
log

∣∣∣∣
1

z − ζ

∣∣∣∣ dµ(ζ)

is called a logarithmic potential of µ on E, where

Vµ(E) = sup
z∈E

Uµ(z), V = inf
µ
Vµ(E).

We define the logarithmic capacity(simply, capacity), cap(E) of E by

cap(E) = exp(−V).

Obviously 0 ≤ cap(E) < ∞.

Example 1.6. For the Cantor ternary set E{2/3}, cap(E) ≥ 1/18.
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Proposition 1.7. ([10]) The capacity of a countable set is also zero,
and the union of a countable set of sets of capacity zero is of capacity
zero.

The following statements which relates the modulus and capacity is
needed in the proof of the theorem.

Example 1.8. ([10]) Let E be a compact set in U and Γ be the
familly of all curves which join {z | |z| = 1} to E. Then

mod(Γ) = 0 if and only if cap(E) = 0.

Theorem 1.9. ([9]) Let E be a Borel subset of ∂U and Γ(E, α) the
family of all curves γ in D = {z ∈ U |α < |z| < 1} that connect
{z | |z| = α} and E.

cap(E) ≤ 1 + α√
α

(−1)
1

Γ(E,α) ,

where α > 0 is a sufficiently small constant.

2. Capacity under some conformal mappings

Now we are ready to state our result. The following theorem states
that if f : U → Ω is conformal, then the set of radii whose images under
f have infinite length has vanishing capacity.

Theorem 2.1. Let f : U → Ω be a conformal mapping with f ′(0) =
1. If P (f, r) is the set of all p ∈ ∂U with

len(f([0, p))) ≥ r > 0,

then

cap(P (f, r)) ≤ k√
r
,

where k is the positive constant. And for large r, there exist functions
f , such that

cap(P (f, r)) ≥ 1
2
√

r
.

For our proof of the theorem 2.1, we will need the followings.

Theorem 2.2. ([9]) Let f : U → Ω be a conformal mapping, γ a
curve in U with endpoints 0, p ∈ ∂U and [0, p) the radius of U with
endpoint p. Then

len(f([0, p))) ≤ c len(f ◦ γ),
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where c is a positive constant.

The following lemma states a modulus estimate. It shows us the
usefullness of the method of modulus.

Lemma 2.3. Let D be a domain and Γ a family of curves in D which
have one endpoint in a compact set F ⊆ D̄. Suppose F is contained in
a disc of diameter η > 0 centered at the origin. If L ≥ η and len(γ) ≥ L
for all γ ∈ Γ, then

mod(Γ) ≤ 2π

log(1 + L/η)
.

Proof. In addition to our assumptions on M we may assume that
there exists at least one rectifiable curve in D which connects a point in
D to a point in M. For otherwise it is easy to see that

mod(Γ) = 0.

(Consider test functions ρ which are equal to α > 0 on B ∩D where B
is some open disc containing M and 0 elsewhere. Let α tend to 0.)

For w ∈ D define
l(w) = infγ len(γ),

where the infimum is taken over all curves in D connecting w and M .
The additional assumption on M implies that

l(w) < ∞
for all w ∈ D. The function l is continuous on D and satisfies

l(w) ≥ |w| − η

2
for w ∈ D. Moreover, if γ : [0, t0] → Ω is a curve in D parameterized
with respect to arc-length and if γ(0) ∈ M, then

l(γ(t)) ≤ t

for t ∈ (0, t0].
Define ρ : D → [0,∞) by

ρ(w) =

{
1

(log(1+L/η))(η+l(w)) if l(w) ≤ L,

0 otherwise.
Obviously, the function ρ is Borel measurable and we claim that∫

γ
ρ(w)|dw| ≥ 1

for all γ ∈ Γ. Hence forth, log(1 + L/η) will simply denote δ.
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To see this let γ ∈ Γ be arbitrary. We may assume that γ : I → Ω has
an arc-length parametrization with I = [0, len(γ)] and that γ(0) ∈ M.
We have l(γ(s)) ≤ s for all s ∈ I − {0}. By assumption len(γ) ≥ L and
so

∫

γ
ρ(w)|dw| ≥ 1

δ

∫ L

0

ds

η + l(γ(s))

≥ 1
δ

∫ L

0

ds

η + s

= 1.

Therefore, if L ≥ η

mod (Γ) ≤
∫ ∫

D
ρ(w)2dm2(w)

=
1
δ2

∫ ∫

{w∈D:l(w)≤L}

dm2(w)
(η + l(w))2

≤ 1
δ2

∫ ∫

{w∈Ω:|w|≤L+η/2}

dm2(w)
(η/2 + |w|)2

=
2π

δ
+ 2π

log 2− 1 + η/(2L + 2η)
δ2

≤ 2π

δ

=
2π

log(1 + L/η)
.

This completes the proof of the lemma.

3. Proof of the theorem 2.1

The idea of the proof is essentially the same as in [9]. A limiting ar-
gument is employed in Pfluger’s theorem which is related to the concept
of reduced extremal distance([1], [8]). The new ingredients in our proof
are the more refined modulus estimate of the lemma and the use of the
Gehring-Hayman theorem. The proof will show that for the constant k
in the theorem we can take

k =
√

2c

where c is the constant in the Gehring-Hayman theorem([7]).
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We use the notation of the theorem and may assume f(0) = 0. Let
α ∈ (0, 1) be arbitrary. Let Γ1(α) be the family of all curves in {z ∈
U |α < |z| < 1} connecting {z ∈ U | |z| = α} and P (f, r). We leave it
to the reader to show that the set P (f, r) is a countable intersection of
open subsets of ∂U. Hence it is a Borel set.

Suppose γ ∈ Γ1(α) and let z0 ∈ U, |z0| = α, and p ∈ P (f, r) be the
endpoints of γ. Let [0, z0] be the line segment with endpoints 0 and z0.
If we join [0, z0] and γ, then we get a curve γ̃ in U connecting 0 and p.
By the Gehring-Hayman theorem and by definition of P (f, r)

len(f ◦ γ̃) ≥ 1
c

len(f([0, p)))

≥ r

c
.

By Koebe’s distortion theorem([9]),

|f ′(z)| ≤ 1 + 5α

if |z| ≤ α and α > 0 is sufficiently small. It follows that for small α

len(f ◦ γ) ≥ r

c
− (α + 5α2)

= L.

We now apply the lemma for the region

D = f(U − {z ∈ U | |z| ≤ α}),
the compact set

M = f({z ∈ U | |z| = α}) ⊆ D̄

and the curve family

Γ2(α) = {f ◦ γ | γ ∈ Γ1(α)}.
By Koebe’s distortion theorem M is contained in a disc centered at the
origin of diameter

η = 2α(1 + 3α)
for small α > 0. It follows that for small α > 0

mod(Γ1(α)) = mod(Γ2(α))

≤ 2π

log
(

r/c+α+α2

2α(1+3α)

) .

Hence Pfluger’s theorem implies
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cap(P (f, r)) ≤ lim inf
α→o

(1 + α)
√

2 + 6α√
r/c + α + α2

=
√

2c√
r

=
k√
r
.

The first part of the theorem follows.
For the second part consider the Koebe function

f(z) =
z

(1− z)2
, z ∈ Ω− {1}.

If r > 1
4 there exists ϕ ∈ (0, π) such that

R =
1

4 sin2(ϕ/2)
.

Since
len(f([0, p))) ≥ |f(p)|

for p ∈ ∂U, we have

A = {eiβ |β ∈ [−ϕ,ϕ]} ⊆ P (f, r).

Since the capacity of the circular arc A is

cap(A) = sin
ϕ

2
([9]) we obtain

cap(P (f, r)) ≥ 1
2
√

r
.

This completes the proof of the theorem.
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