LOGARITHMIC CAPACITY UNDER CONFORMAL MAPPINGS OF THE UNIT DISC

Bohyun Chung*

Abstract

If $P(f, r)$ is the set of endpoints of radii which have length greater than or equal to $r>0$ under a conformal mapping f of the unit disc. Then for large r, the logarithmic capacity of $P(f, r), \frac{1}{2 \sqrt{r}} \leq \operatorname{cap}(P(f, r)) \leq \frac{k}{\sqrt{r}}$. Where k is the positive constant.

1. Modulus and logarithmic capacity

The theory of modulus has been successfully applied to analytic functions of a complex variable, and it has found application in the study of conformal mappings.

Throughout this note, $\Omega=\{z\}$ will denote the complex plane, D is a domain in Ω. And U is the unit disc in Ω. A curve $\gamma: I \rightarrow \Omega$ is a continuous mapping of an interval I. If we speak of a curve in D, then we allow the endpoints of the curve to lie on ∂D. A curve γ in D connects two sets $A, B \subseteq \bar{D}$, if γ has one endpoint in A and one in B. We denote by len (γ) the euclidean length of γ.

Definition 1.1. ([1]) The modulus $\bmod (\Gamma)$ of a family Γ of locally rectifiable curves(simply, curves or arcs) in a domain D is defined as

$$
\bmod (\Gamma)=i n f_{\rho} \iint_{D} \rho(z)^{2} d m_{2}(z)
$$

Where m_{2} is two-dimensional Lebesque measure and infimum is taken over all non-negative Borel measurable functions ρ that satisfy

$$
\int_{\gamma} \rho(z)|d z| \geq 1
$$

[^0]for all $\gamma \in \Gamma$, where $|d z|$ means integration with respect to euclidean arc-length. We shall call a function $\rho(z)$ in D admissible in association with Γ. Obviously $0 \leq \bmod (\Gamma) \leq \infty$.

Proposition 1.2. ([9]) If $\Gamma_{1}=\{\gamma\}$ is a curve family in some domain $D_{1}, f: D_{1} \rightarrow D_{2}$ is a conformal mapping and Γ_{2} is the curve family in D_{2} consisting of the curves $f \circ \gamma$, then

$$
\bmod \left(\Gamma_{1}\right)=\bmod \left(\Gamma_{2}\right) .
$$

Example 1.3. Let T be a Jordan domain with three distinguished boundary points and Γ the family of all curves in T which touch all three sides, then

$$
\bmod (\Gamma)=\frac{1}{\sqrt{3}}
$$

In fact, by Proposition 1.2, we begin by mapping conformally on an equilateral triangle with side 1 . The minimum length of $\gamma \in \Gamma$ is that of the altitude: $\sqrt{3} / 2$. We set $\rho=2 / \sqrt{3}$. Then ρ is admissible in association with Γ and it follows that $\bmod (\Gamma)=(2 / \sqrt{3})^{2}(\sqrt{3} / 4)=1 / \sqrt{3}$.

Example 1.4. Let R be a rectangle of sides a and b, Γ the family of all curves in R which join the two sides of length a. Then

$$
\bmod (\Gamma)=\frac{a}{b} .
$$

In fact, since the minimum length of $\gamma \in \Gamma$ is b, we set $\rho=1 / b$. Then ρ is admissible in association with Γ, and we obtain $\bmod (\Gamma)=a / b$.

Definition 1.5. ([2]) Let E be a bounded Borel set in Ω, μ a positive mass-distribution on E with total mass unity. Then

$$
\mathbb{U}^{\mu}(z)=\int_{E} \log \left|\frac{1}{z-\zeta}\right| d \mu(\zeta)
$$

is called a logarithmic potential of μ on E, where

$$
\mathbb{V}_{\mu}(E)=\sup _{z \in E} \mathbb{U}^{\mu}(z), \quad \mathbb{V}=\inf _{\mu} \mathbb{V}_{\mu}(E) .
$$

We define the logarithmic capacity(simply, capacity), $\operatorname{cap}(E)$ of E by

$$
\operatorname{cap}(E)=\exp (-\mathbb{V}) .
$$

Obviously $0 \leq \operatorname{cap}(E)<\infty$.
Example 1.6. For the Cantor ternary set $E\{2 / 3\}, \quad \operatorname{cap}(E) \geq 1 / 18$.

Proposition 1.7. ([10]) The capacity of a countable set is also zero, and the union of a countable set of sets of capacity zero is of capacity zero.

The following statements which relates the modulus and capacity is needed in the proof of the theorem.

Example 1.8. ([10]) Let E be a compact set in U and Γ be the familly of all curves which join $\{z||z|=1\}$ to E. Then

$$
\bmod (\Gamma)=0 \quad \text { if and only if } \quad \operatorname{cap}(E)=0 .
$$

Theorem 1.9. ([9]) Let E be a Borel subset of ∂U and $\Gamma(E, \alpha)$ the family of all curves γ in $D=\{z \in U|\alpha<|z|<1\}$ that connect $\{z||z|=\alpha\}$ and E.

$$
\operatorname{cap}(E) \leq \frac{1+\alpha}{\sqrt{\alpha}}(-1)^{\frac{1}{\Gamma(E, \alpha)}},
$$

where $\alpha>0$ is a sufficiently small constant.

2. Capacity under some conformal mappings

Now we are ready to state our result. The following theorem states that if $f: U \rightarrow \Omega$ is conformal, then the set of radii whose images under f have infinite length has vanishing capacity.

Theorem 2.1. Let $f: U \rightarrow \Omega$ be a conformal mapping with $f^{\prime}(0)=$ 1. If $P(f, r)$ is the set of all $p \in \partial U$ with

$$
\operatorname{len}(f([0, p))) \geq r>0,
$$

then

$$
\operatorname{cap}(P(f, r)) \leq \frac{k}{\sqrt{r}},
$$

where k is the positive constant. And for large r, there exist functions f, such that

$$
\operatorname{cap}(P(f, r)) \geq \frac{1}{2 \sqrt{r}}
$$

For our proof of the theorem 2.1, we will need the followings.
Theorem 2.2. ([9]) Let $f: U \rightarrow \Omega$ be a conformal mapping, γ a curve in U with endpoints $0, p \in \partial U$ and $[0, p)$ the radius of U with endpoint p. Then

$$
\operatorname{len}(f([0, p))) \leq c \operatorname{len}(f \circ \gamma),
$$

where c is a positive constant.
The following lemma states a modulus estimate. It shows us the usefullness of the method of modulus.

Lemma 2.3. Let D be a domain and Γ a family of curves in D which have one endpoint in a compact set $F \subseteq \bar{D}$. Suppose F is contained in a disc of diameter $\eta>0$ centered at the origin. If $L \geq \eta$ and $\operatorname{len}(\gamma) \geq L$ for all $\gamma \in \Gamma$, then

$$
\bmod (\Gamma) \leq \frac{2 \pi}{\log (1+L / \eta)}
$$

Proof. In addition to our assumptions on M we may assume that there exists at least one rectifiable curve in D which connects a point in D to a point in M. For otherwise it is easy to see that

$$
\bmod (\Gamma)=0 .
$$

(Consider test functions ρ which are equal to $\alpha>0$ on $B \cap D$ where B is some open disc containing M and 0 elsewhere. Let α tend to 0 .)

For $w \in D$ define

$$
l(w)=i n f_{\gamma} \operatorname{len}(\gamma),
$$

where the infimum is taken over all curves in D connecting w and M. The additional assumption on M implies that

$$
l(w)<\infty
$$

for all $w \in D$. The function l is continuous on D and satisfies

$$
l(w) \geq|w|-\frac{\eta}{2}
$$

for $w \in D$. Moreover, if $\gamma:\left[0, t_{0}\right] \rightarrow \Omega$ is a curve in D parameterized with respect to arc-length and if $\gamma(0) \in M$, then

$$
l(\gamma(t)) \leq t
$$

for $t \in\left(0, t_{0}\right]$.
Define $\rho: D \rightarrow[0, \infty)$ by

$$
\rho(w)= \begin{cases}\frac{1}{(\log (1+L / \eta))(\eta+l(w))} & \text { if } l(w) \leq L, \\ 0 & \text { otherwise } .\end{cases}
$$

Obviously, the function ρ is Borel measurable and we claim that

$$
\int_{\gamma} \rho(w)|d w| \geq 1
$$

for all $\gamma \in \Gamma$. Hence forth, $\log (1+L / \eta)$ will simply denote δ.

To see this let $\gamma \in \Gamma$ be arbitrary. We may assume that $\gamma: I \rightarrow \Omega$ has an arc-length parametrization with $I=[0, \operatorname{len}(\gamma)]$ and that $\gamma(0) \in M$. We have $l(\gamma(s)) \leq s$ for all $s \in I-\{0\}$. By assumption len $(\gamma) \geq L$ and so

$$
\begin{aligned}
\int_{\gamma} \rho(w)|d w| & \geq \frac{1}{\delta} \int_{0}^{L} \frac{d s}{\eta+l(\gamma(s))} \\
& \geq \frac{1}{\delta} \int_{0}^{L} \frac{d s}{\eta+s} \\
& =1
\end{aligned}
$$

Therefore, if $L \geq \eta$

$$
\begin{aligned}
\bmod (\Gamma) & \leq \iint_{D} \rho(w)^{2} d m_{2}(w) \\
& =\frac{1}{\delta^{2}} \iint_{\{w \in D: l(w) \leq L\}} \frac{d m_{2}(w)}{(\eta+l(w))^{2}} \\
& \leq \frac{1}{\delta^{2}} \iint_{\{w \in \Omega:|w| \leq L+\eta / 2\}} \frac{d m_{2}(w)}{(\eta / 2+|w|)^{2}} \\
& =\frac{2 \pi}{\delta}+2 \pi \frac{\log 2-1+\eta /(2 L+2 \eta)}{\delta^{2}} \\
& \leq \frac{2 \pi}{\delta} \\
& =\frac{2 \pi}{\log (1+L / \eta)}
\end{aligned}
$$

This completes the proof of the lemma.

3. Proof of the theorem 2.1

The idea of the proof is essentially the same as in [9]. A limiting argument is employed in Pfluger's theorem which is related to the concept of reduced extremal distance([1], [8]). The new ingredients in our proof are the more refined modulus estimate of the lemma and the use of the Gehring-Hayman theorem. The proof will show that for the constant k in the theorem we can take

$$
k=\sqrt{2 c}
$$

where c is the constant in the Gehring-Hayman theorem([7]).

We use the notation of the theorem and may assume $f(0)=0$. Let $\alpha \in(0,1)$ be arbitrary. Let $\Gamma_{1}(\alpha)$ be the family of all curves in $\{z \in$ $U|\alpha<|z|<1\}$ connecting $\{z \in U||z|=\alpha\}$ and $P(f, r)$. We leave it to the reader to show that the set $P(f, r)$ is a countable intersection of open subsets of ∂U. Hence it is a Borel set.

Suppose $\gamma \in \Gamma_{1}(\alpha)$ and let $z_{0} \in U,\left|z_{0}\right|=\alpha$, and $p \in P(f, r)$ be the endpoints of γ. Let $\left[0, z_{0}\right]$ be the line segment with endpoints 0 and z_{0}. If we join $\left[0, z_{0}\right]$ and γ, then we get a curve $\tilde{\gamma}$ in U connecting 0 and p. By the Gehring-Hayman theorem and by definition of $P(f, r)$

$$
\begin{aligned}
\operatorname{len}(f \circ \tilde{\gamma}) & \geq \frac{1}{c} \operatorname{len}(f([0, p))) \\
& \geq \frac{r}{c}
\end{aligned}
$$

By Koebe's distortion theorem([9]),

$$
\left|f^{\prime}(z)\right| \leq 1+5 \alpha
$$

if $|z| \leq \alpha$ and $\alpha>0$ is sufficiently small. It follows that for small α

$$
\begin{aligned}
\operatorname{len}(f \circ \gamma) & \geq \frac{r}{c}-\left(\alpha+5 \alpha^{2}\right) \\
& =L
\end{aligned}
$$

We now apply the lemma for the region

$$
D=f(U-\{z \in U| | z \mid \leq \alpha\})
$$

the compact set

$$
M=f(\{z \in U| | z \mid=\alpha\}) \subseteq \bar{D}
$$

and the curve family

$$
\Gamma_{2}(\alpha)=\left\{f \circ \gamma \mid \gamma \in \Gamma_{1}(\alpha)\right\}
$$

By Koebe's distortion theorem M is contained in a disc centered at the origin of diameter

$$
\eta=2 \alpha(1+3 \alpha)
$$

for small $\alpha>0$. It follows that for small $\alpha>0$

$$
\begin{aligned}
\bmod \left(\Gamma_{1}(\alpha)\right) & =\bmod \left(\Gamma_{2}(\alpha)\right) \\
& \leq \frac{2 \pi}{\log \left(\frac{r / c+\alpha+\alpha^{2}}{2 \alpha(1+3 \alpha)}\right)}
\end{aligned}
$$

Hence Pfluger's theorem implies

$$
\begin{aligned}
\operatorname{cap}(P(f, r)) & \leq \lim _{\alpha \rightarrow o} \frac{(1+\alpha) \sqrt{2+6 \alpha}}{\sqrt{r / c+\alpha+\alpha^{2}}} \\
& =\frac{\sqrt{2 c}}{\sqrt{r}} \\
& =\frac{k}{\sqrt{r}}
\end{aligned}
$$

The first part of the theorem follows.
For the second part consider the Koebe function

$$
f(z)=\frac{z}{(1-z)^{2}}, \quad z \in \Omega-\{1\}
$$

If $r>\frac{1}{4}$ there exists $\varphi \in(0, \pi)$ such that

$$
R=\frac{1}{4 \sin ^{2}(\varphi / 2)}
$$

Since

$$
\operatorname{len}(f([0, p))) \geq|f(p)|
$$

for $p \in \partial U$, we have

$$
A=\left\{e^{i \beta} \mid \beta \in[-\varphi, \varphi]\right\} \subseteq P(f, r)
$$

Since the capacity of the circular $\operatorname{arc} A$ is

$$
\operatorname{cap}(A)=\sin \frac{\varphi}{2}
$$

([9]) we obtain

$$
\operatorname{cap}(P(f, r)) \geq \frac{1}{2 \sqrt{r}}
$$

This completes the proof of the theorem.

References

[1] L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
[2] L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Math. Ser., 26, Princeton Univ. Press, Prinston, N. J., 1960.
[3] A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1-13.
[4] Bo-Hyun, Chung, Some results for the extremal lengths of curve families (II), J. Appl. Math. and Computing. 15 (2004), no. 1-2, 495-502.
[5] Bo-Hyun, Chung, Some applications of extremal length to analytic functions, Commun. Korean Math. Soc. 21 (2006), no.1, 135-143.
[6] Bo-Hyun, Chung, Extremal length and geometric inequalities, J. Chungcheong Math. Soc. 20 (2007), 147-156.
[7] F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353-361.
[8] A. Pfluger, Extremallängen und Kapazität, Comm. Math. Helv. 29 (1955), 120131.
[9] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.
[10] L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, New York, 1969.

Mathematics Section, College of Science and Technology
Hongik University
Jhochiwon 339-701, Republic of Korea
E-mail: bohyun@hongik.ac.kr

[^0]: Received March 29, 2010; Accepted June 01, 2010.
 2010 Mathematics Subject Classification: Primary 30C20, 30C62, 30C85.
 Key words and phrases: conformal mapping, modulus.
 This work was supported by 2009 Hongik University Research Fund.

