JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 23, No. 3, September 2010

LOGARITHMIC CAPACITY UNDER CONFORMAL
MAPPINGS OF THE UNIT DISC

BouyunNn CHUNG*

ABSTRACT. If P(f,r) is the set of endpoints of radii which have
length greater than or equal to r > 0 under a conformal mapping
f of the unit disc. Then for large r, the logarithmic capacity of
Iz(f,tr), 2\17 < cap(P(f,r)) < % Where k is the positive con-
stant.

1. Modulus and logarithmic capacity

The theory of modulus has been successfully applied to analytic func-
tions of a complex variable, and it has found application in the study of
conformal mappings.

Throughout this note, Q = {z} will denote the complex plane, D is
a domain in €. And U is the unit disc in €. A curve v : [ — Q is
a continuous mapping of an interval I. If we speak of a curve in D,
then we allow the endpoints of the curve to lie on D. A curve v in D
connects two sets A, B C D, if v has one endpoint in A and one in B.
We denote by len(y) the euclidean length of ~.

DEFINITION 1.1. ([1]) The modulus mod( ) of a family I" of locally
rectifiable curves(simply, curves or arcs) in a domain D is defined as

mod(T mfp// (2)%2dma(z

Where ms is two-dimensional Lebesque measure and infimum is taken
over all non-negative Borel measurable functions p that satisfy

L p(2))dz] > 1
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for all v € I', where |dz| means integration with respect to euclidean
arc-length. We shall call a function p(z) in D admissible in association
with I'. Obviously 0 < mod(I") < co.

ProposITION 1.2. ([9]) If T'; = {7} is a curve family in some domain
Dy, f: Dy — Dy is a conformal mapping and I's is the curve family in
D3 consisting of the curves f o+, then

mod(T'1) = mod(T'2).

ExAMPLE 1.3. Let T be a Jordan domain with three distinguished
boundary points and I" the family of all curves in T which touch all three

sides, then
1

V3’

In fact, by Proposition 1.2, we begin by mapping conformally on an
equilateral triangle with side 1. The minimum length of v € I is that of
the altitude: v/3/2. We set p = 2/4/3. Then p is admissible in association
with I and it follows that mod(T) = (2/v/3)%(v/3/4) = 1/v/3.

mod(T") =

ExXAMPLE 1.4. Let R be a rectangle of sides a and b, I' the family of
all curves in R which join the two sides of length a. Then
a
7

In fact, since the minimum length of v € T" is b, we set p = 1/b. Then
p is admissible in association with I', and we obtain mod(I") = a/b.

mod(I") =

DEFINITION 1.5. ([2]) Let E be a bounded Borel set in 2, p a positive
mass-distribution on E with total mass unity. Then

UA(z) = /E log

is called a logarithmic potential of u on E, where

Vu(E) =supUt(z), V=1infV,(E).
zelR o

z —

! c‘ (<)

We define the logarithmic capacity(simply, capacity), cap(E) of E by
cap(E) = exp(—V).
Obviously 0 < cap(F) < oo.
EXAMPLE 1.6. For the Cantor ternary set £{2/3}, cap(E) > 1/18.
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PROPOSITION 1.7. ([10]) The capacity of a countable set is also zero,
and the union of a countable set of sets of capacity zero is of capacity
Zero.

The following statements which relates the modulus and capacity is
needed in the proof of the theorem.

ExAMPLE 1.8. ([10]) Let E be a compact set in U and I' be the

familly of all curves which join {z]||z| = 1} to E. Then
mod(I') =0 if and only if cap(F) = 0.

THEOREM 1.9. ([9]) Let E be a Borel subset of U and I'(E, «) the
family of all curves v in D = {z € U|a < |z| < 1} that connect
{z||z| = a} and E.
1+a

Va

where a > 0 is a sufficiently small constant.

cap(E) < — 2 (—1)TEm,

2. Capacity under some conformal mappings

Now we are ready to state our result. The following theorem states
that if f : U — € is conformal, then the set of radii whose images under
f have infinite length has vanishing capacity.

THEOREM 2.1. Let f : U — Q be a conformal mapping with f'(0) =
1. If P(f,r) is the set of all p € OU with

len(f([0,p))) = r >0,
then .
cap(P(f,r)) < 7

where k is the positive constant. And for large r, there exist functions
f, such that

cap(P(f,r)) > 2\1/;

For our proof of the theorem 2.1, we will need the followings.

THEOREM 2.2. ([9]) Let f : U — § be a conformal mapping, v a
curve in U with endpoints 0, p € 9U and [0,p) the radius of U with
endpoint p. Then

ten(f([0,p))) < ¢ len(f o),
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where c is a positive constant.

The following lemma states a modulus estimate. It shows us the
usefullness of the method of modulus.

LEMMA 2.3. Let D be a domain and I" a family of curves in D which
have one endpoint in a compact set F C D. Suppose F is contained in
a disc of diameter n > 0 centered at the origin. If L > n and len(y) > L
for all v € I, then

27

< ———
~ log(1+4 L/n)
Proof. In addition to our assumptions on M we may assume that

there exists at least one rectifiable curve in D which connects a point in
D to a point in M. For otherwise it is easy to see that

mod(T") = 0.
(Consider test functions p which are equal to « > 0 on BN D where B

is some open disc containing M and 0 elsewhere. Let « tend to 0.)
For w € D define

mod(T")

l(w) = inf, len(),
where the infimum is taken over all curves in D connecting w and M.
The additional assumption on M implies that

l(w) < 00
for all w € D. The function [ is continuous on D and satisfies

n
l(w) > |w| — =
() > fu] ~ !
for w € D. Moreover, if v : [0,¢9] — 2 is a curve in D parameterized
with respect to arc-length and if v(0) € M, then

I(v(@) <t

for t € (0,to).
Define p: D — [0,00) by

1 .
P(w) — ) (log(1+L/n))(n+l(w)) if l(w) <L,
0 otherwise.

Obviously, the function p is Borel measurable and we claim that

/ plw)|duw| > 1
:

for all v € T'. Hence forth, log(1 + L/n) will simply denote 4.
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To see this let v € I" be arbitrary. We may assume that v : I — 2 has
an arc-length parametrization with I = [0,len(y)] and that ~(0) € M.
We have [(y(s)) < s for all s € I —{0}. By assumption len(y) > L and

SO
>
X/,o(w)dw > 5/ ; l

/L ds
0Jo nts

= 1

v

Therefore, if L > n

mod (I') < // )2dma(w
dm
- 52//weDlw)<L} 77'1‘?(( )))

</ s
52 weiw|<L4n/2}y (1/2 + |w[)?
2

T log2 —1+n/(2L+2n)
= 5t 52

2n
o

IN

27
log(1+ L/n)’
This completes the proof of the lemma. O

3. Proof of the theorem 2.1

The idea of the proof is essentially the same as in [9]. A limiting ar-
gument is employed in Pfluger’s theorem which is related to the concept
of reduced extremal distance([1], [8]). The new ingredients in our proof
are the more refined modulus estimate of the lemma and the use of the
Gehring-Hayman theorem. The proof will show that for the constant k
in the theorem we can take

k=+2c

where c is the constant in the Gehring-Hayman theorem([7]).
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We use the notation of the theorem and may assume f(0) = 0. Let
a € (0,1) be arbitrary. Let I'; () be the family of all curves in {z €
Ula < |z| < 1} connecting {z € U||z| = a} and P(f,r). We leave it
to the reader to show that the set P(f,r) is a countable intersection of
open subsets of QU. Hence it is a Borel set.

Suppose v € I'1(a) and let 29 € U, |20| = «, and p € P(f,r) be the
endpoints of 7. Let [0, zp] be the line segment with endpoints 0 and zj.
If we join [0, 29| and ~, then we get a curve 4 in U connecting 0 and p.
By the Gehring-Hayman theorem and by definition of P(f,r)

~ len(f([0,p)

r
c

len(f %)

v

>
By Koebe’s distortion theorem([9]),
[f'(2)] <14 5a

if |z2| < o and a > 0 is sufficiently small. It follows that for small a

len(foy) > r_ (o + 5a?)
c
= L.
We now apply the lemma for the region
D= f(U—-{z€Ullz[ <a}),
the compact set -
M=f({zeUllzl=a})C D
and the curve family
Ly(a) ={foy|y eTi(a)}.
By Koebe’s distortion theorem M is contained in a disc centered at the
origin of diameter
n = 2a(1 + 3a)
for small « > 0. It follows that for small a > 0

mod(I'1(a)) = mod(Ty(c))
27

20(143a)

Hence Pfluger’s theorem implies
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1 V2
cap(P(f,r)) < lim inf (1+)v2+6a
a=o .\ /r/c+ a+ o?
V2c
Jr
LA
7
The first part of the theorem follows.
For the second part consider the Koebe function

f(z) = (1_%)2, z€Q—{1}.
If r > 1 there exists ¢ € (0,7) such that
1
= 15 (0)2)

Since

ten(f([0,p))) = | f(p)l
for p € OU, we have
A={e’|Be[~p.¢]} C P(f,r).
Since the capacity of the circular arc A is

cap(A) = sin%

([9]) we obtain

‘ ~

cap(P(f,r)) =

This completes the proof of the theorem.

2

<
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