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A DECOMPOSITION INTO ATOMS OF TENT SPACES
ASSOCIATED WITH GENERAL APPROACH REGIONS

CHOON-SERK Sug*

ABSTRACT. We first introduce a space of homogeneous type X,
and develop the theory of the tent spaces on the generalized upper
half-space X X (0,00). The goal of this paper is to study that
every element of the tent spaces TH(X X (0,00),0 < p < 1, can be
decomposed into elementary particles which are called ”atoms.”

1. Introduction

The theory of the tent spaces on the upper half-space R’}fl was in-
troduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1].
In this paper we study the theory of the tent spaces on the generalized
upper half-space X x (0, 00), where X is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type
[2]: Let X be a topological space endowed with Borel measure u. Assume
that d is a pseudo-metric on X, that is, a nonnegative function defined
on X x X satisfying

(i) d(z,z) = 0;d(x,y) > 0 if z # y,
(i) d(z,y) = d(y, z), and
(iii) d(z, z) < K(d(x,y) + d(y, 2)), where K is some fixed constant.

Assume further that

(a) the balls B(z,p) = {y € X : d(x,y) < p}, p > 0, form a basis of
open neighborhoods at x € X,
and that p satisfies the doubling property:

(b) 0 < u(B(x,2p)) < Au(B(x,p)) < oo, where A is some fixed
constant.
Then we call X a space of homogeneous type.

) d
) d
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Property (iii) will be referred to as the “triangle inequality.” Note that
property (b) implies that for every C' > 0 there is a constant Ac < oo
such that

w(B(z,Cp)) < Acp(B(z, p))
for all x € X and p > 0.

Note that the volume of balls will be proportional to a fixed power
of the radius. Thus assume there are a o € R and constants C7 and Cy
such that

C1p® < u(B(z, p)) < Cop®.

We will denote u(B(zx,p)) ~ p* for the simplicity of the notation.

Now consider the space X x (0,00), which is a kind of generalized
upper half-space over X. Suppose that there is a given set 2, C X X
(0, 00) for each z € X. Let Q denote the family {2;},cx. Thus at each
x € X, Q determines a collection of balls, namely, {B(y,t) : (y,t) € Q. }.

For a measurable function f defined on X x (0,00), and real number
a, we define an area function Sq o (f) of f, with respect to 2, as

1/2
) SaalN@ = ( [ 1woP®)

for x € X. Throughout this paper we will always assume that €2 is chosen
so that Sq o (f) is a measurable function on X, and that Q@ = {Q;},ex
is a symmetric family, that is, if x € Q,(¢), then y € Q.(t), where
Qu(t) = {y € X : (5.1) € U}

For any set £ C X, the tent over E, with respect to €2, is the set

Eq = (X x (0,00))\ | Q-
¢ E

The tent space Th is defined as the space of functions f on X x (0, o),
so that S o(f) € LP(dp), 0 < p < oo, and set

L fllzz = 1Sa.a () e dp)-

For 0 < p <1, a function a, supported in Bq for some ball B in X,
is said to be an (£, p)-atom if

dp(z)dt _
| et 0P < i
B

We need the notion of points of density: Let F' be a closed subset of
X whose complement has finite measure. Let « be a fixed parameter,
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0 < v < 1. Then we say that a point x € X has global v-density with
respect to F' if

p(F 0 Bz, p)) y
u(B(z,p))  —
for allballs B(z, p) in X. Observe that if F™* is the set of points of global
~v-density with respect to F'; then F* is closed, F* C F', and
(2) CF*={ze€X:M(xer)(x) >1—~},

where ycp is the characteristic function of the open set ¢F, and M is
the Hardy-Littlewood maximal operator on X.

2. Main result

LEMMA 2.1. The Hardy-Littlewood maximal operator M is of weak
type (1,1). More precisely, if f € L} (dp), then there is a constant C
so that

p({z € X« M(f)(z) > A}) < C|f[l1/A
for all A > 0.

LEMMA 2.2. Assume F is a closed subset of X. Then there is a
constant C' such that

u(°F*) < Cu(°F),
where F* is the set of points of global y-density with respect to F'.

Proof. Since the Hardy-Littlewood maximal operator M is of weak
type (1,1) by Lemma 1, there is a constant C so that

3) p{z € X o M(xer)(x) > 1= 7}) < Gyl[xer[l/1 =7
But the left side of (3) is equal to p(°F*) by (2) and so the proof is
complete. O

LEMMA 2.3. There are constants C,, and v, 0 < v < 1, sufficiently
close to 1, so that whenever F' is a closed subset of X whose complement
has finite measure and @ is a nonnegative measurable function defined
on X x (0,00), then

/UIEF*szm Pl OF duly)dt = C”/F </§2 @(y’t)dﬂ(y)dt> dp(x),

where « is given as in (1), and F* is the set of points of global y-density
with respect to F.
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Proof. Observe that Fubini’s theorem gives

/F </Q 2, t>dﬂ<y>dt> du(z)

= /X P(y,t) ( /F xB(y,t)(m)dﬂ(w)> du(y)dt,

where X pg(, ) is the characteristic function of the ball B(y,t). Thus it
will suffice to show that if

() e |
zel™*

then there is a constant C, so that

(4) | xeo(@)duta) = e
Let
w,t) e |J Q.
reF*

Then there is a point z € F* so that d(z,y) < t. Now it is obvious by
geometric observation that

(5) n(B(x,t) N°B(y,t)) < Cu(B(z,t)),
where C' < 1. However, it is true that
u(F' N B(y,t)) + p(B(z,t) N “B(y,t))
(6) > uw(FNB(z,t)N By, t) + u(F N B(x,t) N“B(y,t))
= p(F N B(z,t)).
By the global y-density property, we have
(7) u(F 0 B(2,8)) > yu(B(a, 1)),
Thus (5), (6) and (7) imply that
n(F N B(y,t))
> p(F N B(z,t)) — p(B(x,t) N “B(y,1))
> (v = O)u(B(x, 1))
= Cyu(B(x,1)),

and so, if 7y is chosen sufficiently close to 1, then we have

/F X5 (@)du(z) > Cot,
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since u(B(z,t)) ~ t*. Thus we get (4). The proof is therefore complete.
O

The next lemma is of the type due to Whitney.

LEMMA 2.4. Let O be an open subset of X. Then there are positive
constants A, hy1 > 1,ho > 1 and hg < 1 which depend only on the space
X, and a sequence {B(z;, p;)} of balls such that
(i) UZ'B(%‘Z‘, pi) =0,

(ﬁ) B(xi,hgpi) C O and B(a;i, hlpi) N (X \ O) #* (Z),
(iii) the balls B(x;, hsp;) are pairwise disjoint, and
(iv) no point in O lies in more than A of the balls B(x;, hap;).

As the main result of this paper, the following theorem means that
every element of the tent spaces 15,0 < p < 1, can be decomposed into
elementary particles which are called “atoms.”

THEOREM 2.5. Let a function f belong to the tent spaces Ty, 0 <
p < 1. Then

oo
|f(xa t)’ < Z )\jaj(l', t)a
=0
where the a;’s are (2, p)-atoms, and the \;’s are positive numbers. More-
over,

Z /\5 < CHSQ,C%(f)HiP(du)
=0

for some constant C.

Proof. For each integer k, let Oy be the open set
Op = “Fr = {x € X : Sq.o(f)(z) > 2F}.

Let Oj = “F}¥. Then it follows from the notion of global y-density (with
~ sufficiently close to 1) that

Op ={z € X : M(xo,)(x) >1—1~}.

Observe that for each integer k,

Ok, O Opy1,

OZ D O,
and R R

O;; D Og.
Moreover, U2 _ 000;2 contains the support of f in X x (0,00). We dis-
tinguish two cases:
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Case 1. For every integer k, O} # X. Let

O; = | B

j=0
be a Whitney decomposition of the open set O}, where
Byj = B(Tk,j, pr.j)-
Let
Bij = B(xy;, Chipr),
where Ry is given in (ii) of Lemma 4, and C' will be chosen sufficiently
large in a moment. If (z,t) € Oy, then B(x,t) C Of, and x € By, ; for
some j. Let
Y € B(zg,j, hipr;) N (X \ Op).
Then we have
t<d(z,y)
(8) < K(d(x,zr,5) + d(wg,4,y))
< K(14 h1)prj,
where K is the constant in the triangle inequality. Hence if z € B(x,t),
then it follows from (8) that
d(l’k,j, 2) <K
<K
<K
K

d(zg j,x) + d(z, 2))
prj+t)

prj + K (1 + hi)py ;)
1+ K1+ h1))pk-

—~ o~~~

Thus if we choose C' so that
K1+ K +hy)) <Chy,
then it follows that
B(z,t) C B(xk,j, Chipr.;),
and hence
(z,t) € X/EE
Thus we have

OZ \ Olf;rl = U AVEE
J

where

Ay =X MO\ Oy
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If we let xj ; be the characteristic function of the set Ay ;, then

fly 1)) < Zlf (¥, 1) Xk (Y5 1)

= Z Ak,j0k,; (Y, 1)

where
ar,;(y,1)
—1/2
= 1B TP ()P (0, ) </ _|f(y,t)2du(i/)dt> ,

and

1/2
~ d dt
Mg = (B y) /24P ( . 1opty ) .
k,j

Now ayj is an (£, p)-atom associated to the ball By ; since |f(y,t)| <
21 in (X x (0,00)) \ OkJrl Also, put

F:COk-f—la
_ Nk
U 2 =0i,
zeF*
x __ cyk
F* = Ok+1’

and
1 —
é(ya t) = |f(ya t)FWXEkJ (y7 t)a

and apply Lemma 3 to get that

du(y)dt
I

o duy)dt
<[ o, OO
< [ G wolfop s

k+1
w(y)dt
<o [ [ 1rort o L )
Og+1
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<C, (S.a(f)(@))*du()

¢Og+1NBy
< G5 (22 u( By ).

Thus we have

p/2
SN =Y ulBig) ( / f(y,t>|2d“(ty>dt>
k. k. A

koj
< CY 2Ru(By ) PP (B )P
k7j
< C Z QPkM(BkJ-) (by the doubling property)

IN

k,j
CY 2%u(0;)  (by Lemma 4)
k

IN

C Z 2P 11 (Og) (by Lemma 2)
k

IN

CHSQ,a(f)HIEp(d#)‘

Case 2. Op = X for some integer k. Since ||Sq,o(f)||rr(ay) < o0,
there is an integer n so that O} = X for k < n, and O} # X for k > n.
For k = n, let

An = (X x (0,00))\ Of41,

A\, = M(X)fl/QJrl/p (/ \f(y,t)|2 du(y)dt>1/2 |
An

t

and

an(y,t)

= (X)L £y, 1) (0. 1) ( | 1wor

n

dﬂ(y)dt> e
; .

Then a, is an (2, p)-atom since |f(y,t)| < 2" in (X x (0,00)) \ O, ;.
For k > n, define xx j, Ak j, and a ; as before. Then we have

F(u, )] < [y, D)xan (@) + D 1, 0)xwi (v, t)
k>n,j

= )\nan(yat) + Z )\k7jak:,j(yat)'
k>n,j
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Finally we have

p/2
)\g = M(X)_p/Q‘H </A |f(y,t)2du(t )dt>

p/2
Cp(x) /2 ( [ uwﬁwdum)

p/2
< Cp(X) P ([O (Sn,a(f)(ﬂf))Qdu(iv)>

IN

< Op(X)
< Cu(Oy) (by Lemma 2)
< C||Sa,al(f )||Lp(du (by the Chebycheff’s inequality).

Thus, for £ > n, we have as before

X < ClSaalHIE g
k.j

and the proof is complete. O
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