# A DECOMPOSITION INTO ATOMS OF TENT SPACES ASSOCIATED WITH GENERAL APPROACH REGIONS 

Choon-Serk SuH*


#### Abstract

We first introduce a space of homogeneous type $X$, and develop the theory of the tent spaces on the generalized upper half-space $X \times(0, \infty)$. The goal of this paper is to study that every element of the tent spaces $T_{\Omega}^{p}(X \times(0, \infty), 0<p \leq 1$, can be decomposed into elementary particles which are called "atoms."


## 1. Introduction

The theory of the tent spaces on the upper half-space $\mathbb{R}_{+}^{n+1}$ was introduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1]. In this paper we study the theory of the tent spaces on the generalized upper half-space $X \times(0, \infty)$, where $X$ is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type [2]: Let $X$ be a topological space endowed with Borel measure $\mu$. Assume that $d$ is a pseudo-metric on $X$, that is, a nonnegative function defined on $X \times X$ satisfying
(i) $d(x, x)=0 ; d(x, y)>0$ if $x \neq y$,
(ii) $d(x, y)=d(y, x)$, and
(iii) $d(x, z) \leq K(d(x, y)+d(y, z))$, where $K$ is some fixed constant.

Assume further that
(a) the balls $B(x, \rho)=\{y \in X: d(x, y)<\rho\}, \rho>0$, form a basis of open neighborhoods at $x \in X$, and that $\mu$ satisfies the doubling property:
(b) $0<\mu(B(x, 2 \rho)) \leq A \mu(B(x, \rho))<\infty$, where $A$ is some fixed constant.
Then we call $X$ a space of homogeneous type.

[^0]Property (iii) will be referred to as the "triangle inequality." Note that property (b) implies that for every $C>0$ there is a constant $A_{C}<\infty$ such that

$$
\mu(B(x, C \rho)) \leq A_{C} \mu(B(x, \rho))
$$

for all $x \in X$ and $\rho>0$.
Note that the volume of balls will be proportional to a fixed power of the radius. Thus assume there are a $\alpha \in \mathbb{R}$ and constants $C_{1}$ and $C_{2}$ such that

$$
C_{1} \rho^{\alpha} \leq \mu(B(x, \rho)) \leq C_{2} \rho^{\alpha}
$$

We will denote $\mu(B(x, \rho)) \approx \rho^{\alpha}$ for the simplicity of the notation.
Now consider the space $X \times(0, \infty)$, which is a kind of generalized upper half-space over $X$. Suppose that there is a given set $\Omega_{x} \subset X \times$ $(0, \infty)$ for each $x \in X$. Let $\Omega$ denote the family $\left\{\Omega_{x}\right\}_{x \in X}$. Thus at each $x \in X, \Omega$ determines a collection of balls, namely, $\left\{B(y, t):(y, t) \in \Omega_{x}\right\}$.

For a measurable function $f$ defined on $X \times(0, \infty)$, and real number $\alpha$, we define an area function $S_{\Omega, \alpha}(f)$ of $f$, with respect to $\Omega$, as

$$
\begin{equation*}
S_{\Omega, \alpha}(f)(x)=\left(\int_{\Omega_{x}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t^{\alpha+1}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for $x \in X$. Throughout this paper we will always assume that $\Omega$ is chosen so that $S_{\Omega, \alpha}(f)$ is a measurable function on $X$, and that $\Omega=\left\{\Omega_{x}\right\}_{x \in X}$ is a symmetric family, that is, if $x \in \Omega_{y}(t)$, then $y \in \Omega_{x}(t)$, where $\Omega_{x}(t)=\left\{y \in X:(y, t) \in \Omega_{x}\right\}$.

For any set $E \subset X$, the tent over $E$, with respect to $\Omega$, is the set

$$
\hat{E_{\Omega}}=(X \times(0, \infty)) \backslash \bigcup_{x \notin E} \Omega_{x}
$$

The tent space $T_{\Omega}^{p}$ is defined as the space of functions $f$ on $X \times(0, \infty)$, so that $S_{\Omega, \alpha}(f) \in L^{p}(d \mu), 0<p<\infty$, and set

$$
\|f\|_{T_{\Omega}^{p}}=\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)} .
$$

For $0<p \leq 1$, a function $a$, supported in $\hat{B_{\Omega}}$ for some ball $B$ in $X$, is said to be an $(\Omega, p)$-atom if

$$
\int_{\hat{B_{\Omega}}}|a(x, t)|^{2} \frac{d \mu(x) d t}{t} \leq[\mu(B)]^{1-2 / p}
$$

We need the notion of points of density: Let $F$ be a closed subset of $X$ whose complement has finite measure. Let $\gamma$ be a fixed parameter,
$0<\gamma<1$. Then we say that a point $x \in X$ has global $\gamma$-density with respect to $F$ if

$$
\frac{\mu(F \cap B(x, \rho))}{\mu(B(x, \rho))} \geq \gamma
$$

for all balls $B(x, \rho)$ in $X$. Observe that if $F^{*}$ is the set of points of global $\gamma$-density with respect to $F$; then $F^{*}$ is closed, $F^{*} \subset F$, and

$$
\begin{equation*}
{ }^{c} F^{*}=\left\{x \in X: M\left(\chi^{c} F\right)(x)>1-\gamma\right\}, \tag{2}
\end{equation*}
$$

where $\chi^{c} F$ is the characteristic function of the open set ${ }^{c} F$, and $M$ is the Hardy-Littlewood maximal operator on $X$.

## 2. Main result

Lemma 2.1. The Hardy-Littlewood maximal operator $M$ is of weak type $(1,1)$. More precisely, if $f \in L_{\text {loc }}^{1}(d \mu)$, then there is a constant $C$ so that

$$
\mu(\{x \in X: M(f)(x)>\lambda\}) \leq C\|f\|_{1} / \lambda
$$

for all $\lambda>0$.
Lemma 2.2. Assume $F$ is a closed subset of $X$. Then there is a constant $C$ such that

$$
\mu\left({ }^{c} F^{*}\right) \leq C \mu\left({ }^{c} F\right)
$$

where $F^{*}$ is the set of points of global $\gamma$-density with respect to $F$.
Proof. Since the Hardy-Littlewood maximal operator $M$ is of weak type $(1,1)$ by Lemma 1 , there is a constant $C_{\gamma}$ so that

$$
\begin{equation*}
\mu\left(\left\{x \in X: M\left(\chi^{c} F\right)(x)>1-\gamma\right\}\right) \leq C_{\gamma}\left\|\chi_{c^{c} F}\right\|_{1} / 1-\gamma . \tag{3}
\end{equation*}
$$

But the left side of (3) is equal to $\mu\left({ }^{c} F^{*}\right)$ by (2) and so the proof is complete.

Lemma 2.3. There are constants $C_{\gamma}$ and $\gamma, 0<\gamma<1$, sufficiently close to 1 , so that whenever $F$ is a closed subset of $X$ whose complement has finite measure and $\Phi$ is a nonnegative measurable function defined on $X \times(0, \infty)$, then

$$
\int_{\cup_{x \in F^{*}} \Omega_{x}} \Phi(y, t) t^{\alpha} d \mu(y) d t \leq C_{\gamma} \int_{F}\left(\int_{\Omega_{x}} \Phi(y, t) d \mu(y) d t\right) d \mu(x)
$$

where $\alpha$ is given as in (1), and $F^{*}$ is the set of points of global $\gamma$-density with respect to $F$.

Proof. Observe that Fubini's theorem gives

$$
\begin{aligned}
\int_{F} & \left(\int_{\Omega_{x}} \Phi(y, t) d \mu(y) d t\right) d \mu(x) \\
& =\int_{X} \Phi(y, t)\left(\int_{F} \chi_{B(y, t)}(x) d \mu(x)\right) d \mu(y) d t
\end{aligned}
$$

where $\chi_{B(y, t)}$ is the characteristic function of the ball $B(y, t)$. Thus it will suffice to show that if

$$
(y, t) \in \bigcup_{x \in F^{*}} \Omega_{x}
$$

then there is a constant $C_{\gamma}$ so that

$$
\begin{equation*}
\int_{F} \chi_{B(y, t)}(x) d \mu(x) \geq C_{\gamma} t^{\alpha} \tag{4}
\end{equation*}
$$

Let

$$
(y, t) \in \bigcup_{x \in F^{*}} \Omega_{x}
$$

Then there is a point $x \in F^{*}$ so that $d(x, y)<t$. Now it is obvious by geometric observation that

$$
\begin{equation*}
\mu\left(B(x, t) \cap{ }^{c} B(y, t)\right) \leq C \mu(B(x, t)) \tag{5}
\end{equation*}
$$

where $C<1$. However, it is true that

$$
\begin{align*}
& \mu(F \cap B(y, t))+\mu\left(B(x, t) \cap^{c} B(y, t)\right) \\
& \quad \geq \mu(F \cap B(x, t) \cap B(y, t))+\mu\left(F \cap B(x, t) \cap{ }^{c} B(y, t)\right)  \tag{6}\\
& \quad=\mu(F \cap B(x, t)) .
\end{align*}
$$

By the global $\gamma$-density property, we have

$$
\begin{equation*}
\mu(F \cap B(x, t)) \geq \gamma \mu(B(x, t)) \tag{7}
\end{equation*}
$$

Thus (5), (6) and (7) imply that

$$
\begin{aligned}
& \mu(F \cap B(y, t)) \\
& \quad \geq \mu(F \cap B(x, t))-\mu\left(B(x, t) \cap{ }^{c} B(y, t)\right) \\
& \quad \geq(\gamma-C) \mu(B(x, t)) \\
& \quad=C_{\gamma} \mu(B(x, t)),
\end{aligned}
$$

and so, if $\gamma$ is chosen sufficiently close to 1 , then we have

$$
\int_{F} \chi_{B(y, t)}(x) d \mu(x) \geq C_{\gamma} t^{\alpha}
$$

since $\mu(B(x, t)) \approx t^{\alpha}$. Thus we get (4). The proof is therefore complete.

The next lemma is of the type due to Whitney.
Lemma 2.4. Let $O$ be an open subset of $X$. Then there are positive constants $A, h_{1}>1, h_{2}>1$ and $h_{3}<1$ which depend only on the space $X$, and a sequence $\left\{B\left(x_{i}, \rho_{i}\right)\right\}$ of balls such that
(i) $\cup_{i} B\left(x_{i}, \rho_{i}\right)=O$,
(ii) $B\left(x_{i}, h_{2} \rho_{i}\right) \subset O$ and $B\left(x_{i}, h_{1} \rho_{i}\right) \cap(X \backslash O) \neq \emptyset$,
(iii) the balls $B\left(x_{i}, h_{3} \rho_{i}\right)$ are pairwise disjoint, and
(iv) no point in $O$ lies in more than $A$ of the balls $B\left(x_{i}, h_{2} \rho_{i}\right)$.

As the main result of this paper, the following theorem means that every element of the tent spaces $T_{\Omega}^{p}, 0<p \leq 1$, can be decomposed into elementary particles which are called "atoms."

Theorem 2.5. Let a function $f$ belong to the tent spaces $T_{\Omega}^{p}, 0<$ $p \leq 1$. Then

$$
|f(x, t)| \leq \sum_{j=0}^{\infty} \lambda_{j} a_{j}(x, t)
$$

where the $a_{j}$ 's are $(\Omega, p)$-atoms, and the $\lambda_{j}$ 's are positive numbers. Moreover,

$$
\sum_{j=0}^{\infty} \lambda_{j}^{p} \leq C\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)}^{p}
$$

for some constant $C$.
Proof. For each integer $k$, let $O_{k}$ be the open set

$$
O_{k}={ }^{c} F_{k}=\left\{x \in X: S_{\Omega, \alpha}(f)(x)>2^{k}\right\}
$$

Let $O_{k}^{*}={ }^{c} F_{k}^{*}$. Then it follows from the notion of global $\gamma$-density (with $\gamma$ sufficiently close to 1 ) that

$$
O_{k}^{*}=\left\{x \in X: M\left(\chi_{O_{k}}\right)(x)>1-\gamma\right\} .
$$

Observe that for each integer $k$,

$$
\begin{aligned}
& O_{k} \supset O_{k+1} \\
& O_{k}^{*} \supset O_{k}
\end{aligned}
$$

and

$$
\hat{O_{k}^{*}} \supset \hat{O_{k}}
$$

Moreover, $\cup_{k=-\infty}^{\infty} \hat{O}_{k}^{*}$ contains the support of $f$ in $X \times(0, \infty)$. We distinguish two cases:

Case 1. For every integer $k, O_{k}^{*} \neq X$. Let

$$
O_{k}^{*}=\bigcup_{j=0}^{\infty} B_{k, j}
$$

be a Whitney decomposition of the open set $O_{k}^{*}$, where

$$
B_{k, j}=B\left(x_{k, j}, \rho_{k, j}\right)
$$

Let

$$
\tilde{B}_{k, j}=B\left(x_{k, j}, C h_{1} \rho_{k, j}\right)
$$

where $h_{1}$ is given in (ii) of Lemma 4 , and $C$ will be chosen sufficiently large in a moment. If $(x, t) \in \hat{O}_{k}^{*}$, then $B(x, t) \subset O_{k}^{*}$, and $x \in B_{k, j}$ for some $j$. Let

$$
y \in B\left(x_{k, j}, h_{1} \rho_{k, j}\right) \cap\left(X \backslash O_{k}^{*}\right)
$$

Then we have

$$
\begin{align*}
t & \leq d(x, y) \\
& \leq K\left(d\left(x, x_{k, j}\right)+d\left(x_{k, j}, y\right)\right)  \tag{8}\\
& \leq K\left(1+h_{1}\right) \rho_{k, j}
\end{align*}
$$

where $K$ is the constant in the triangle inequality. Hence if $z \in B(x, t)$, then it follows from (8) that

$$
\begin{aligned}
d\left(x_{k, j}, z\right) & \leq K\left(d\left(x_{k, j}, x\right)+d(x, z)\right) \\
& \leq K\left(\rho_{k, j}+t\right) \\
& \leq K\left(\rho_{k, j}+K\left(1+h_{1}\right) \rho_{k, j}\right) \\
& =K\left(1+K\left(1+h_{1}\right)\right) \rho_{k, j} .
\end{aligned}
$$

Thus if we choose $C$ so that

$$
K\left(1+K\left(1+h_{1}\right)\right)<C h_{1},
$$

then it follows that

$$
B(x, t) \subset B\left(x_{k, j}, C h_{1} \rho_{k, j}\right)
$$

and hence

$$
(x, t) \in \widehat{\chi_{\widetilde{B}_{k, j}}}
$$

Thus we have

$$
\hat{O}_{k}^{*} \backslash O_{k+1}^{\hat{*}}=\bigcup_{j} \Delta_{k, j}
$$

where

$$
\Delta_{k, j}=\widehat{\chi_{\widetilde{B}_{k, j}}} \cap\left(\hat{O}_{k}^{*} \backslash O_{k+1}^{\hat{*}}\right)
$$

If we let $\chi_{k, j}$ be the characteristic function of the set $\Delta_{k, j}$, then

$$
\begin{aligned}
|f(y, t)| & \leq \sum_{k, j}|f(y, t)| \chi_{k, j}(y, t) \\
& \equiv \sum_{k, j} \lambda_{k, j} a_{k, j}(y, t),
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{k, j}(y, t) \\
& =\mu\left(\tilde{B}_{k, j}\right)^{1 / 2-1 / p}|f(y, t)| \chi_{k, j}(y, t)\left(\int_{\Delta_{k, j}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{-1 / 2}
\end{aligned}
$$

and

$$
\lambda_{k, j}=\mu\left(\tilde{B}_{k, j}\right)^{-1 / 2+1 / p}\left(\int_{\Delta_{k, j}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{1 / 2} .
$$

Now $a_{k, j}$ is an $(\Omega, p)$-atom associated to the ball $\tilde{B}_{k, j}$ since $|f(y, t)| \leq$ $2^{k+1}$ in $(X \times(0, \infty)) \backslash O_{k+1}^{\hat{*}}$. Also, put

$$
\begin{aligned}
F & ={ }^{c} O_{k+1}, \\
\bigcup_{x \in F^{*}} \Omega_{x} & =O_{k+1}^{*}, \\
F^{*} & ={ }^{c} O_{k+1}^{*},
\end{aligned}
$$

and

$$
\Phi(y, t)=|f(y, t)|^{2} \frac{1}{t^{\alpha+1}} \widehat{\chi_{\tilde{B}_{k, j}}}(y, t),
$$

and apply Lemma 3 to get that

$$
\begin{aligned}
& \int_{\Delta_{k, j}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t} \\
\leq & \int_{\widehat{\chi_{\overparen{B}}, j}} \backslash O_{k+1}^{\hat{*}} \\
\leq & \int_{c_{O_{k+1}^{*}}^{*}} \widehat{\chi_{\tilde{B}_{k, j}}}(y, t)|f(y, t)|^{2} \frac{d \mu(y) d t}{t} \\
\leq & C_{\gamma} \int_{c_{O_{k+1}}} \int_{\Omega_{x}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t} \widehat{\tilde{\chi}_{\tilde{B}_{k, j}}}(y, t) \frac{d \mu(y) d t}{t^{\sigma+1}} d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{\gamma} \int_{c_{O_{k+1} \cap \tilde{B}_{k, j}}}\left(S_{\Omega, \alpha}(f)(x)\right)^{2} d \mu(x) \\
& \leq C_{\gamma}\left(2^{k+1}\right)^{2} \mu\left(\tilde{B}_{k, j}\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\sum_{k, j} \lambda_{k, j}^{p} & =\sum_{k, j} \mu\left(\tilde{B}_{k, j}\right)^{1-p / 2}\left(\int_{\Delta_{k, j}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{p / 2} \\
& \leq C \sum_{k, j} 2^{p k} \mu\left(\tilde{B}_{k, j}\right)^{1-p / 2} \mu\left(\tilde{B}_{k, j}\right)^{p / 2} \\
& \leq C \sum_{k, j} 2^{p k} \mu\left(B_{k, j}\right) \quad(\text { by the doubling property }) \\
& \leq C \sum_{k} 2^{p k} \mu\left(O_{k}^{*}\right) \quad(\text { by Lemma 4) } \\
& \leq C \sum_{k} 2^{p k} \mu\left(O_{k}\right) \quad(\text { by Lemma 2) } \\
& \leq C\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)}^{p} .
\end{aligned}
$$

Case 2. $O_{k}^{*}=X$ for some integer $k$. Since $\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)}<\infty$, there is an integer $n$ so that $O_{k}^{*}=X$ for $k \leq n$, and $O_{k}^{*} \neq X$ for $k>n$. For $k=n$, let

$$
\begin{gathered}
\Delta_{n}=(X \times(0, \infty)) \backslash O_{n+1}^{*} \\
\lambda_{n}=\mu(X)^{-1 / 2+1 / p}\left(\int_{\Delta_{n}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{1 / 2}
\end{gathered}
$$

and

$$
\begin{aligned}
& a_{n}(y, t) \\
= & \mu(X)^{-1 / p+1 / 2}|f(y, t)| \chi_{\Delta_{n}}(y, t)\left(\int_{\Delta_{n}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{-1 / 2}
\end{aligned}
$$

Then $a_{n}$ is an $(\Omega, p)$-atom since $|f(y, t)| \leq 2^{n+1}$ in $(X \times(0, \infty)) \backslash O_{n+1}^{\hat{*}}$. For $k>n$, define $\chi_{k, j}, \lambda_{k, j}$, and $a_{k, j}$ as before. Then we have

$$
\begin{aligned}
|f(y, t)| & \leq|f(y, t)| \chi_{\Delta_{n}}(y, t)+\sum_{k>n, j}|f(y, t)| \chi_{k, j}(y, t) \\
& =\lambda_{n} a_{n}(y, t)+\sum_{k>n, j} \lambda_{k, j} a_{k, j}(y, t) .
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
& \lambda_{n}^{p}=\mu(X)^{-p / 2+1}\left(\int_{\Delta_{n}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t}\right)^{p / 2} \\
& \leq C \mu(X)^{-p / 2+1}\left(\int_{c_{O_{n+1}}} \int_{\Omega_{x}}|f(y, t)|^{2} \frac{d \mu(y) d t}{t^{\alpha+1}} d \mu(x)\right)^{p / 2} \\
& \leq C \mu(X)^{-p / 2+1}\left(\int_{c_{O_{n+1}}}\left(S_{\Omega, \alpha}(f)(x)\right)^{2} d \mu(x)\right)^{p / 2} \\
& \leq C \mu(X) \\
& \leq C \mu\left(O_{n}\right) \quad \text { (by Lemma 2) } \\
& \leq C\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)}^{p} \quad \text { (by the Chebycheff's inequality). }
\end{aligned}
$$

Thus, for $k>n$, we have as before

$$
\sum_{k, j} \lambda_{k, j}^{p} \leq C\left\|S_{\Omega, \alpha}(f)\right\|_{L^{p}(d \mu)}^{p}
$$

and the proof is complete.

## References

[1] R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Func. Anal. 62 (1985), 304-355.
[2] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242 (1971).
[3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
*
School of Information and Communications Engineering
Dongyang University
Yeongju 750-711, Republic of Korea
E-mail: cssuh@dyu.ac.kr


[^0]:    Received March 22, 2010; Accepted August 12, 2010.
    2010 Mathematics Subject Classification: Primary 42B25.
    Key words and phrases: space of homogeneous type, tent space, atom, global $\gamma$-density.

