JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 3, September 2010

A DECOMPOSITION INTO ATOMS OF TENT SPACES ASSOCIATED WITH GENERAL APPROACH REGIONS

CHOON-SERK SUH*

ABSTRACT. We first introduce a space of homogeneous type X, and develop the theory of the tent spaces on the generalized upper half-space $X \times (0, \infty)$. The goal of this paper is to study that every element of the tent spaces $T^p_{\Omega}(X \times (0, \infty), 0 , can be$ decomposed into elementary particles which are called "atoms."

1. Introduction

The theory of the tent spaces on the upper half-space \mathbb{R}^{n+1}_+ was introduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1]. In this paper we study the theory of the tent spaces on the generalized upper half-space $X \times (0, \infty)$, where X is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type [2]: Let X be a topological space endowed with Borel measure μ . Assume that d is a pseudo-metric on X, that is, a nonnegative function defined on $X \times X$ satisfying

- (i) d(x, x) = 0; d(x, y) > 0 if $x \neq y$,
- (ii) d(x, y) = d(y, x), and
- (iii) $d(x,z) \leq K(d(x,y) + d(y,z))$, where K is some fixed constant.

Assume further that

(a) the balls $B(x,\rho) = \{y \in X : d(x,y) < \rho\}, \rho > 0$, form a basis of open neighborhoods at $x \in X$,

and that μ satisfies the doubling property:

(b) $0 < \mu(B(x, 2\rho)) \le A\mu(B(x, \rho)) < \infty$, where A is some fixed constant.

Then we call X a space of homogeneous type.

Received March 22, 2010; Accepted August 12, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25.

Key words and phrases: space of homogeneous type, tent space, atom, global $\gamma\text{-density.}$

Choon-Serk Suh

Property (iii) will be referred to as the "triangle inequality." Note that property (b) implies that for every C > 0 there is a constant $A_C < \infty$ such that

$$\mu(B(x, C\rho)) \le A_C \mu(B(x, \rho))$$

for all $x \in X$ and $\rho > 0$.

Note that the volume of balls will be proportional to a fixed power of the radius. Thus assume there are a $\alpha \in \mathbb{R}$ and constants C_1 and C_2 such that

$$C_1 \rho^{\alpha} \le \mu(B(x,\rho)) \le C_2 \rho^{\alpha}.$$

We will denote $\mu(B(x,\rho)) \approx \rho^{\alpha}$ for the simplicity of the notation.

Now consider the space $X \times (0, \infty)$, which is a kind of generalized upper half-space over X. Suppose that there is a given set $\Omega_x \subset X \times$ $(0,\infty)$ for each $x \in X$. Let Ω denote the family $\{\Omega_x\}_{x \in X}$. Thus at each $x \in X$, Ω determines a collection of balls, namely, $\{B(y,t) : (y,t) \in \Omega_x\}$.

For a measurable function f defined on $X \times (0, \infty)$, and real number α , we define an area function $S_{\Omega,\alpha}(f)$ of f, with respect to Ω , as

(1)
$$S_{\Omega,\alpha}(f)(x) = \left(\int_{\Omega_x} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{\alpha+1}}\right)^{1/2}$$

for $x \in X$. Throughout this paper we will always assume that Ω is chosen so that $S_{\Omega,\alpha}(f)$ is a measurable function on X, and that $\Omega = {\{\Omega_x\}_{x \in X}}$ is a symmetric family, that is, if $x \in \Omega_y(t)$, then $y \in \Omega_x(t)$, where $\Omega_x(t) = {y \in X : (y,t) \in \Omega_x}.$

For any set $E \subset X$, the *tent* over E, with respect to Ω , is the set

$$\hat{E}_{\Omega} = (X \times (0, \infty)) \setminus \bigcup_{x \notin E} \Omega_x.$$

The tent space T_{Ω}^p is defined as the space of functions f on $X \times (0, \infty)$, so that $S_{\Omega,\alpha}(f) \in L^p(d\mu), 0 , and set$

$$||f||_{T^p_{\Omega}} = ||S_{\Omega,\alpha}(f)||_{L^p(d\mu)}.$$

For 0 , a function*a* $, supported in <math>\hat{B}_{\Omega}$ for some ball *B* in *X*, is said to be an (Ω, p) -atom if

$$\int_{\hat{B}_{\Omega}} |a(x,t)|^2 \frac{d\mu(x)dt}{t} \le [\mu(B)]^{1-2/p}.$$

We need the notion of points of density: Let F be a closed subset of X whose complement has finite measure. Let γ be a fixed parameter,

 $0 < \gamma < 1$. Then we say that a point $x \in X$ has global γ -density with respect to F if

$$\frac{\mu(F \cap B(x,\rho))}{\mu(B(x,\rho))} \ge \gamma$$

for all balls $B(x, \rho)$ in X. Observe that if F^* is the set of points of global γ -density with respect to F; then F^* is closed, $F^* \subset F$, and

(2)
$${}^{c}F^{*} = \{x \in X : M(\chi_{c}F)(x) > 1 - \gamma\},\$$

where χ_{cF} is the characteristic function of the open set ^{c}F , and M is the Hardy-Littlewood maximal operator on X.

2. Main result

LEMMA 2.1. The Hardy-Littlewood maximal operator M is of weak type (1,1). More precisely, if $f \in L^1_{loc}(d\mu)$, then there is a constant Cso that

$$\mu(\{x \in X : M(f)(x) > \lambda\}) \le C||f||_1/\lambda$$

for all $\lambda > 0$.

LEMMA 2.2. Assume F is a closed subset of X. Then there is a constant C such that

$$\mu(^{c}F^{*}) \le C\mu(^{c}F),$$

where F^* is the set of points of global γ -density with respect to F.

Proof. Since the Hardy-Littlewood maximal operator M is of weak type (1,1) by Lemma 1, there is a constant C_{γ} so that

(3)
$$\mu(\{x \in X : M(\chi_{cF})(x) > 1 - \gamma\}) \leq C_{\gamma} ||\chi_{cF}||_{1}/1 - \gamma.$$

But the left side of (3) is equal to $\mu({}^{c}F^{*})$ by (2) and so the proof is complete.

LEMMA 2.3. There are constants C_{γ} and γ , $0 < \gamma < 1$, sufficiently close to 1, so that whenever F is a closed subset of X whose complement has finite measure and Φ is a nonnegative measurable function defined on $X \times (0, \infty)$, then

$$\int_{\bigcup_{x\in F^*}\Omega_x} \Phi(y,t)t^{\alpha}d\mu(y)dt \le C_{\gamma} \int_F \left(\int_{\Omega_x} \Phi(y,t)d\mu(y)dt\right)d\mu(x),$$

where α is given as in (1), and F^* is the set of points of global γ -density with respect to F.

Proof. Observe that Fubini's theorem gives

$$\int_{F} \left(\int_{\Omega_{x}} \Phi(y,t) d\mu(y) dt \right) d\mu(x)$$

=
$$\int_{X} \Phi(y,t) \left(\int_{F} \chi_{B(y,t)}(x) d\mu(x) \right) d\mu(y) dt,$$

where $\chi_{B(y,t)}$ is the characteristic function of the ball B(y,t). Thus it will suffice to show that if

$$(y,t) \in \bigcup_{x \in F^*} \Omega_x,$$

then there is a constant C_{γ} so that

(4)
$$\int_{F} \chi_{B(y,t)}(x) d\mu(x) \ge C_{\gamma} t^{\alpha}$$

Let

$$(y,t) \in \bigcup_{x \in F^*} \Omega_x.$$

Then there is a point $x \in F^*$ so that d(x, y) < t. Now it is obvious by geometric observation that

(5)
$$\mu(B(x,t) \cap {}^cB(y,t)) \le C\mu(B(x,t)),$$

where C < 1. However, it is true that

(6)

$$\mu(F \cap B(y,t)) + \mu(B(x,t) \cap {}^{c}B(y,t))$$

$$\geq \mu(F \cap B(x,t) \cap B(y,t)) + \mu(F \cap B(x,t) \cap {}^{c}B(y,t))$$

$$= \mu(F \cap B(x,t)).$$

By the global γ -density property, we have

(7)
$$\mu(F \cap B(x,t)) \ge \gamma \mu(B(x,t)).$$

Thus (5), (6) and (7) imply that

$$\mu(F \cap B(y,t))$$

$$\geq \mu(F \cap B(x,t)) - \mu(B(x,t) \cap {}^{c}B(y,t))$$

$$\geq (\gamma - C)\mu(B(x,t))$$

$$= C_{\gamma}\mu(B(x,t)),$$

and so, if γ is chosen sufficiently close to 1, then we have

$$\int_{F} \chi_{B(y,t)}(x) d\mu(x) \ge C_{\gamma} t^{\alpha},$$

since $\mu(B(x,t)) \approx t^{\alpha}$. Thus we get (4). The proof is therefore complete.

The next lemma is of the type due to Whitney.

LEMMA 2.4. Let O be an open subset of X. Then there are positive constants $A, h_1 > 1, h_2 > 1$ and $h_3 < 1$ which depend only on the space X, and a sequence $\{B(x_i, \rho_i)\}$ of balls such that $(i) \cup_i B(x_i, \rho_i) = O$, $(ii) B(x_i, h_2\rho_i) \subset O$ and $B(x_i, h_1\rho_i) \cap (X \setminus O) \neq \emptyset$, (iii) the balls $B(x_i, h_3\rho_i)$ are pairwise disjoint, and

(iv) no point in O lies in more than A of the balls $B(x_i, h_2\rho_i)$.

As the main result of this paper, the following theorem means that every element of the tent spaces T^p_{Ω} , 0 , can be decomposed intoelementary particles which are called "atoms."

THEOREM 2.5. Let a function f belong to the tent spaces T_{Ω}^p , 0 . Then

$$|f(x,t)| \le \sum_{j=0}^{\infty} \lambda_j a_j(x,t),$$

where the a_j 's are (Ω, p) -atoms, and the λ_j 's are positive numbers. Moreover,

$$\sum_{j=0}^{\infty} \lambda_j^p \le C ||S_{\Omega,\alpha}(f)||_{L^p(d\mu)}^p$$

for some constant C.

Proof. For each integer k, let O_k be the open set

$$O_k = {}^c F_k = \{ x \in X : S_{\Omega,\alpha}(f)(x) > 2^k \}.$$

Let $O_k^* = {}^c F_k^*$. Then it follows from the notion of global γ -density (with γ sufficiently close to 1) that

$$O_k^* = \{ x \in X : M(\chi_{O_k})(x) > 1 - \gamma \}.$$

Observe that for each integer k,

$$O_k \supset O_{k+1}, \\ O_k^* \supset O_k,$$

and

$$\hat{O}_k^* \supset \hat{O}_k$$

Moreover, $\bigcup_{k=-\infty}^{\infty} \hat{O}_k^*$ contains the support of f in $X \times (0, \infty)$. We distinguish two cases:

Case 1. For every integer $k, O_k^* \neq X$. Let

$$O_k^* = \bigcup_{j=0}^{\infty} B_{k,j}$$

be a Whitney decomposition of the open set $O_k^\ast,$ where

~

$$B_{k,j} = B(x_{k,j}, \rho_{k,j}).$$

Let

$$B_{k,j} = B(x_{k,j}, Ch_1\rho_{k,j})$$

where h_1 is given in (ii) of Lemma 4, and C will be chosen sufficiently large in a moment. If $(x,t) \in \hat{O}_k^*$, then $B(x,t) \subset O_k^*$, and $x \in B_{k,j}$ for some j. Let

$$y \in B(x_{k,j}, h_1\rho_{k,j}) \cap (X \setminus O_k^*)$$

``

Then we have

(8)
$$t \le d(x, y)$$
$$\le K(d(x, x_{k,j}) + d(x_{k,j}, y))$$
$$\le K(1 + h_1)\rho_{k,j},$$

where K is the constant in the triangle inequality. Hence if $z \in B(x, t)$, then it follows from (8) that

$$d(x_{k,j}, z) \leq K(d(x_{k,j}, x) + d(x, z))$$

$$\leq K(\rho_{k,j} + t)$$

$$\leq K(\rho_{k,j} + K(1 + h_1)\rho_{k,j})$$

$$= K(1 + K(1 + h_1))\rho_{k,j}.$$

Thus if we choose C so that

$$K(1 + K(1 + h_1)) < Ch_1,$$

then it follows that

$$B(x,t) \subset B(x_{k,j}, Ch_1\rho_{k,j}),$$

and hence

$$(x,t) \in \widehat{\chi_{\widetilde{B}_{k,j}}}$$

Thus we have

$$\hat{O_k^*} \setminus \hat{O_{k+1}^*} = \bigcup_j \Delta_{k,j},$$

where

$$\Delta_{k,j} = \widehat{\chi_{\widetilde{B}_{k,j}}} \cap (\hat{O_k^*} \setminus O_{k+1}^*).$$

If we let $\chi_{k,j}$ be the characteristic function of the set $\Delta_{k,j}$, then

$$|f(y,t)| \le \sum_{k,j} |f(y,t)| \chi_{k,j}(y,t)$$
$$\equiv \sum_{k,j} \lambda_{k,j} a_{k,j}(y,t),$$

where

$$a_{k,j}(y,t) = \mu(\tilde{B}_{k,j})^{1/2-1/p} |f(y,t)| \chi_{k,j}(y,t) \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{-1/2},$$

and

$$\lambda_{k,j} = \mu(\tilde{B}_{k,j})^{-1/2 + 1/p} \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{1/2}.$$

Now $a_{k,j}$ is an (Ω, p) -atom associated to the ball $\tilde{B}_{k,j}$ since $|f(y,t)| \leq 2^{k+1}$ in $(X \times (0,\infty)) \setminus O_{k+1}^{\hat{*}}$. Also, put

$$F = {}^{c}O_{k+1},$$
$$\bigcup_{x \in F^*} \Omega_x = O_{k+1}^*,$$
$$F^* = {}^{c}O_{k+1}^*,$$

and

$$\Phi(y,t) = |f(y,t)|^2 \frac{1}{t^{\alpha+1}} \widehat{\chi_{\tilde{B}_{k,j}}}(y,t),$$

and apply Lemma 3 to get that

$$\begin{split} &\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \\ &\leq \int_{\widehat{\chi_{\widetilde{B}_{k,j}}} \setminus O_{k+1}^{\circ}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \\ &\leq \int_{^{c}O_{k+1}^{\circ}} \widehat{\chi_{\widetilde{B}_{k,j}}}(y,t) |f(y,t)|^2 \frac{d\mu(y)dt}{t} \\ &\leq C_{\gamma} \int_{^{c}O_{k+1}} \int_{\Omega_x} |f(y,t)|^2 \widehat{\chi_{\widetilde{B}_{k,j}}}(y,t) \frac{d\mu(y)dt}{t^{\sigma+1}} d\mu(x) \end{split}$$

Choon-Serk Suh

$$\leq C_{\gamma} \int_{c_{O_{k+1}} \cap \tilde{B}_{k,j}} (S_{\Omega,\alpha}(f)(x))^2 d\mu(x)$$

$$\leq C_{\gamma} (2^{k+1})^2 \mu(\tilde{B}_{k,j}).$$

Thus we have

$$\begin{split} \sum_{k,j} \lambda_{k,j}^p &= \sum_{k,j} \mu(\tilde{B}_{k,j})^{1-p/2} \left(\int_{\Delta_{k,j}} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{p/2} \\ &\leq C \sum_{k,j} 2^{pk} \mu(\tilde{B}_{k,j})^{1-p/2} \mu(\tilde{B}_{k,j})^{p/2} \\ &\leq C \sum_{k,j} 2^{pk} \mu(B_{k,j}) \qquad \text{(by the doubling property)} \\ &\leq C \sum_k 2^{pk} \mu(O_k^*) \qquad \text{(by Lemma 4)} \\ &\leq C \sum_k 2^{pk} \mu(O_k) \qquad \text{(by Lemma 2)} \\ &\leq C ||S_{\Omega,\alpha}(f)||_{L^p(d\mu)}^p. \end{split}$$

Case 2. $O_k^* = X$ for some integer k. Since $||S_{\Omega,\alpha}(f)||_{L^p(d\mu)} < \infty$, there is an integer n so that $O_k^* = X$ for $k \le n$, and $O_k^* \ne X$ for k > n. For k = n, let

$$\Delta_n = (X \times (0, \infty)) \setminus O_{n+1}^{\hat{*}},$$
$$\lambda_n = \mu(X)^{-1/2 + 1/p} \left(\int_{\Delta_n} |f(y, t)|^2 \frac{d\mu(y)dt}{t} \right)^{1/2},$$

and

$$a_n(y,t) = \mu(X)^{-1/p+1/2} |f(y,t)| \chi_{\Delta_n}(y,t) \left(\int_{\Delta_n} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{-1/2}.$$

Then a_n is an (Ω, p) -atom since $|f(y, t)| \leq 2^{n+1}$ in $(X \times (0, \infty)) \setminus O_{n+1}^*$. For k > n, define $\chi_{k,j}, \lambda_{k,j}$, and $a_{k,j}$ as before. Then we have

$$\begin{aligned} |f(y,t)| &\leq |f(y,t)|\chi_{\Delta_n}(y,t) + \sum_{k>n,j} |f(y,t)|\chi_{k,j}(y,t)| \\ &= \lambda_n a_n(y,t) + \sum_{k>n,j} \lambda_{k,j} a_{k,j}(y,t). \end{aligned}$$

Finally we have

$$\begin{split} \lambda_n^p &= \mu(X)^{-p/2+1} \left(\int_{\Delta_n} |f(y,t)|^2 \frac{d\mu(y)dt}{t} \right)^{p/2} \\ &\leq C\mu(X)^{-p/2+1} \left(\int_{^cO_{n+1}} \int_{\Omega_x} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{\alpha+1}} d\mu(x) \right)^{p/2} \\ &\leq C\mu(X)^{-p/2+1} \left(\int_{^cO_{n+1}} (S_{\Omega,\alpha}(f)(x))^2 d\mu(x) \right)^{p/2} \\ &\leq C\mu(X) \\ &\leq C\mu(O_n) \quad \text{(by Lemma 2)} \\ &\leq C||S_{\Omega,\alpha}(f)||_{L^p(d\mu)}^p \quad \text{(by the Chebycheff's inequality).} \end{split}$$

Thus, for k > n, we have as before

$$\sum_{k,j} \lambda_{k,j}^p \le C ||S_{\Omega,\alpha}(f)||_{L^p(d\mu)}^p,$$

and the proof is complete.

References

- R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Func. Anal. 62 (1985), 304–355.
- [2] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242 (1971).
- [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

*

School of Information and Communications Engineering Dongyang University Yeongju 750-711, Republic of Korea *E-mail*: cssuh@dyu.ac.kr