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A DECOMPOSITION INTO ATOMS OF TENT SPACES
ASSOCIATED WITH GENERAL APPROACH REGIONS

Choon-Serk Suh*

Abstract. We first introduce a space of homogeneous type X,
and develop the theory of the tent spaces on the generalized upper
half-space X × (0,∞). The goal of this paper is to study that
every element of the tent spaces T p

Ω(X × (0,∞), 0 < p ≤ 1, can be
decomposed into elementary particles which are called ”atoms.”

1. Introduction

The theory of the tent spaces on the upper half-space Rn+1
+ was in-

troduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1].
In this paper we study the theory of the tent spaces on the generalized
upper half-space X × (0,∞), where X is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type
[2]: Let X be a topological space endowed with Borel measure µ. Assume
that d is a pseudo-metric on X, that is, a nonnegative function defined
on X ×X satisfying

(i) d(x, x) = 0; d(x, y) > 0 if x 6= y,

(ii) d(x, y) = d(y, x), and

(iii) d(x, z) ≤ K(d(x, y) + d(y, z)), where K is some fixed constant.

Assume further that
(a) the balls B(x, ρ) = {y ∈ X : d(x, y) < ρ}, ρ > 0, form a basis of

open neighborhoods at x ∈ X,
and that µ satisfies the doubling property:

(b) 0 < µ(B(x, 2ρ)) ≤ Aµ(B(x, ρ)) < ∞, where A is some fixed
constant.
Then we call X a space of homogeneous type.
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Property (iii) will be referred to as the “triangle inequality.” Note that
property (b) implies that for every C > 0 there is a constant AC < ∞
such that

µ(B(x,Cρ)) ≤ ACµ(B(x, ρ))

for all x ∈ X and ρ > 0.
Note that the volume of balls will be proportional to a fixed power

of the radius. Thus assume there are a α ∈ R and constants C1 and C2

such that
C1ρ

α ≤ µ(B(x, ρ)) ≤ C2ρ
α.

We will denote µ(B(x, ρ)) ≈ ρα for the simplicity of the notation.
Now consider the space X × (0,∞), which is a kind of generalized

upper half-space over X. Suppose that there is a given set Ωx ⊂ X ×
(0,∞) for each x ∈ X. Let Ω denote the family {Ωx}x∈X . Thus at each
x ∈ X, Ω determines a collection of balls, namely, {B(y, t) : (y, t) ∈ Ωx}.

For a measurable function f defined on X × (0,∞), and real number
α, we define an area function SΩ,α(f) of f , with respect to Ω, as

(1) SΩ,α(f)(x) =
(∫

Ωx

|f(y, t)|2 dµ(y)dt

tα+1

)1/2

for x ∈ X. Throughout this paper we will always assume that Ω is chosen
so that SΩ,α(f) is a measurable function on X, and that Ω = {Ωx}x∈X

is a symmetric family, that is, if x ∈ Ωy(t), then y ∈ Ωx(t), where
Ωx(t) = {y ∈ X : (y, t) ∈ Ωx}.

For any set E ⊂ X, the tent over E, with respect to Ω, is the set

ÊΩ = (X × (0,∞)) \
⋃

x6∈E

Ωx.

The tent space T p
Ω is defined as the space of functions f on X×(0,∞),

so that SΩ,α(f) ∈ Lp(dµ), 0 < p < ∞, and set

||f ||T p
Ω

= ||SΩ,α(f)||Lp(dµ).

For 0 < p ≤ 1, a function a, supported in B̂Ω for some ball B in X,
is said to be an (Ω, p)-atom if

∫

B̂Ω

|a(x, t)|2 dµ(x)dt

t
≤ [µ(B)]1−2/p.

We need the notion of points of density: Let F be a closed subset of
X whose complement has finite measure. Let γ be a fixed parameter,
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0 < γ < 1. Then we say that a point x ∈ X has global γ-density with
respect to F if

µ(F ∩B(x, ρ))
µ(B(x, ρ))

≥ γ

for all balls B(x, ρ) in X. Observe that if F ∗ is the set of points of global
γ-density with respect to F ; then F ∗ is closed, F ∗ ⊂ F , and

(2) cF ∗ = {x ∈ X : M(χcF )(x) > 1− γ},
where χcF is the characteristic function of the open set cF , and M is
the Hardy-Littlewood maximal operator on X.

2. Main result

Lemma 2.1. The Hardy-Littlewood maximal operator M is of weak
type (1, 1). More precisely, if f ∈ L1

loc(dµ), then there is a constant C
so that

µ({x ∈ X : M(f)(x) > λ}) ≤ C||f ||1/λ

for all λ > 0.

Lemma 2.2. Assume F is a closed subset of X. Then there is a
constant C such that

µ(cF ∗) ≤ Cµ(cF ),

where F ∗ is the set of points of global γ-density with respect to F .

Proof. Since the Hardy-Littlewood maximal operator M is of weak
type (1,1) by Lemma 1, there is a constant Cγ so that

(3) µ({x ∈ X : M(χcF )(x) > 1− γ}) ≤ Cγ ||χcF ||1/1− γ.

But the left side of (3) is equal to µ(cF ∗) by (2) and so the proof is
complete.

Lemma 2.3. There are constants Cγ and γ, 0 < γ < 1, sufficiently
close to 1, so that whenever F is a closed subset of X whose complement
has finite measure and Φ is a nonnegative measurable function defined
on X × (0,∞), then

∫

∪x∈F∗Ωx

Φ(y, t)tαdµ(y)dt ≤ Cγ

∫

F

(∫

Ωx

Φ(y, t)dµ(y)dt

)
dµ(x),

where α is given as in (1), and F ∗ is the set of points of global γ-density
with respect to F .
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Proof. Observe that Fubini’s theorem gives
∫

F

(∫

Ωx

Φ(y, t)dµ(y)dt

)
dµ(x)

=
∫

X
Φ(y, t)

(∫

F
χB(y,t)(x)dµ(x)

)
dµ(y)dt,

where χB(y,t) is the characteristic function of the ball B(y, t). Thus it
will suffice to show that if

(y, t) ∈
⋃

x∈F ∗
Ωx,

then there is a constant Cγ so that

(4)
∫

F
χB(y,t)(x)dµ(x) ≥ Cγtα.

Let
(y, t) ∈

⋃

x∈F ∗
Ωx.

Then there is a point x ∈ F ∗ so that d(x, y) < t. Now it is obvious by
geometric observation that

(5) µ(B(x, t) ∩ cB(y, t)) ≤ Cµ(B(x, t)),

where C < 1. However, it is true that

(6)

µ(F ∩B(y, t)) + µ(B(x, t) ∩ cB(y, t))

≥ µ(F ∩B(x, t) ∩B(y, t)) + µ(F ∩B(x, t) ∩ cB(y, t))

= µ(F ∩B(x, t)).

By the global γ-density property, we have

(7) µ(F ∩B(x, t)) ≥ γµ(B(x, t)).

Thus (5), (6) and (7) imply that

µ(F ∩B(y, t))

≥ µ(F ∩B(x, t))− µ(B(x, t) ∩ cB(y, t))

≥ (γ − C)µ(B(x, t))

= Cγµ(B(x, t)),

and so, if γ is chosen sufficiently close to 1, then we have
∫

F
χB(y,t)(x)dµ(x) ≥ Cγtα,



A decomposition into atoms of tent spaces 457

since µ(B(x, t)) ≈ tα. Thus we get (4). The proof is therefore complete.

The next lemma is of the type due to Whitney.

Lemma 2.4. Let O be an open subset of X. Then there are positive
constants A, h1 > 1, h2 > 1 and h3 < 1 which depend only on the space
X, and a sequence {B(xi, ρi)} of balls such that
(i) ∪iB(xi, ρi) = O,
(ii) B(xi, h2ρi) ⊂ O and B(xi, h1ρi) ∩ (X \O) 6= ∅,
(iii) the balls B(xi, h3ρi) are pairwise disjoint, and
(iv) no point in O lies in more than A of the balls B(xi, h2ρi).

As the main result of this paper, the following theorem means that
every element of the tent spaces T p

Ω, 0 < p ≤ 1, can be decomposed into
elementary particles which are called “atoms.”

Theorem 2.5. Let a function f belong to the tent spaces T p
Ω, 0 <

p ≤ 1. Then

|f(x, t)| ≤
∞∑

j=0

λjaj(x, t),

where the aj ’s are (Ω, p)-atoms, and the λj ’s are positive numbers. More-
over,

∞∑

j=0

λp
j ≤ C||SΩ,α(f)||pLp(dµ)

for some constant C.

Proof. For each integer k, let Ok be the open set

Ok = cFk = {x ∈ X : SΩ,α(f)(x) > 2k}.
Let O∗

k = cF ∗
k . Then it follows from the notion of global γ-density (with

γ sufficiently close to 1) that

O∗
k = {x ∈ X : M(χOk

)(x) > 1− γ}.
Observe that for each integer k,

Ok ⊃ Ok+1,

O∗
k ⊃ Ok,

and
Ô∗

k ⊃ Ôk.

Moreover, ∪∞k=−∞Ô∗
k contains the support of f in X × (0,∞). We dis-

tinguish two cases:
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Case 1. For every integer k, O∗
k 6= X. Let

O∗
k =

∞⋃

j=0

Bk,j

be a Whitney decomposition of the open set O∗
k, where

Bk,j = B(xk,j , ρk,j).

Let
B̃k,j = B(xk,j , Ch1ρk,j),

where h1 is given in (ii) of Lemma 4, and C will be chosen sufficiently
large in a moment. If (x, t) ∈ Ô∗

k, then B(x, t) ⊂ O∗
k, and x ∈ Bk,j for

some j. Let
y ∈ B(xk,j , h1ρk,j) ∩ (X \O∗

k).
Then we have

(8)

t ≤ d(x, y)

≤ K(d(x, xk,j) + d(xk,j , y))

≤ K(1 + h1)ρk,j ,

where K is the constant in the triangle inequality. Hence if z ∈ B(x, t),
then it follows from (8) that

d(xk,j , z) ≤ K(d(xk,j , x) + d(x, z))

≤ K(ρk,j + t)

≤ K(ρk,j + K(1 + h1)ρk,j)

= K(1 + K(1 + h1))ρk,j .

Thus if we choose C so that

K(1 + K(1 + h1)) < Ch1,

then it follows that

B(x, t) ⊂ B(xk,j , Ch1ρk,j),

and hence
(x, t) ∈ χ̂

B̃k,j

Thus we have
Ô∗

k \ ˆO∗
k+1 =

⋃

j

∆k,j ,

where
∆k,j = χ̂

B̃k,j
∩ (Ô∗

k \ ˆO∗
k+1).



A decomposition into atoms of tent spaces 459

If we let χk,j be the characteristic function of the set ∆k,j , then

|f(y, t)| ≤
∑

k,j

|f(y, t)|χk,j(y, t)

≡
∑

k,j

λk,jak,j(y, t),

where

ak,j(y, t)

= µ(B̃k,j)1/2−1/p|f(y, t)|χk,j(y, t)

(∫

∆k,j

|f(y, t)|2 dµ(y)dt

t

)−1/2

,

and

λk,j = µ(B̃k,j)−1/2+1/p

(∫

∆k,j

|f(y, t)|2 dµ(y)dt

t

)1/2

.

Now ak,j is an (Ω, p)-atom associated to the ball B̃k,j since |f(y, t)| ≤
2k+1 in (X × (0,∞)) \ ˆO∗

k+1. Also, put

F = cOk+1,⋃

x∈F ∗
Ωx = ˆO∗

k+1,

F ∗ = cO∗
k+1,

and

Φ(y, t) = |f(y, t)|2 1
tα+1

χ̂
B̃k,j

(y, t),

and apply Lemma 3 to get that
∫

∆k,j

|f(y, t)|2 dµ(y)dt

t

≤
∫

χ̂
B̃k,j

\ ˆO∗k+1

|f(y, t)|2 dµ(y)dt

t

≤
∫

c ˆO∗k+1

χ̂
B̃k,j

(y, t)|f(y, t)|2 dµ(y)dt

t

≤ Cγ

∫
cOk+1

∫

Ωx

|f(y, t)|2χ̂
B̃k,j

(y, t)
dµ(y)dt

tσ+1
dµ(x)
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≤ Cγ

∫
cOk+1∩B̃k,j

(SΩ,α(f)(x))2dµ(x)

≤ Cγ(2k+1)2µ(B̃k,j).

Thus we have

∑

k,j

λp
k,j =

∑

k,j

µ(B̃k,j)1−p/2

(∫

∆k,j

|f(y, t)|2 dµ(y)dt

t

)p/2

≤ C
∑

k,j

2pkµ(B̃k,j)1−p/2µ(B̃k,j)p/2

≤ C
∑

k,j

2pkµ(Bk,j) (by the doubling property)

≤ C
∑

k

2pkµ(O∗
k) (by Lemma 4)

≤ C
∑

k

2pkµ(Ok) (by Lemma 2)

≤ C||SΩ,α(f)||pLp(dµ).

Case 2. O∗
k = X for some integer k. Since ||SΩ,α(f)||Lp(dµ) < ∞,

there is an integer n so that O∗
k = X for k ≤ n, and O∗

k 6= X for k > n.
For k = n, let

∆n = (X × (0,∞)) \ ˆO∗
n+1,

λn = µ(X)−1/2+1/p

(∫

∆n

|f(y, t)|2 dµ(y)dt

t

)1/2

,

and

an(y, t)

= µ(X)−1/p+1/2|f(y, t)|χ∆n(y, t)
(∫

∆n

|f(y, t)|2 dµ(y)dt

t

)−1/2

.

Then an is an (Ω, p)-atom since |f(y, t)| ≤ 2n+1 in (X × (0,∞)) \ ˆO∗
n+1.

For k > n, define χk,j , λk,j , and ak,j as before. Then we have

|f(y, t)| ≤ |f(y, t)|χ∆n(y, t) +
∑

k>n,j

|f(y, t)|χk,j(y, t)

= λnan(y, t) +
∑

k>n,j

λk,jak,j(y, t).
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Finally we have

λp
n = µ(X)−p/2+1

(∫

∆n

|f(y, t)|2 dµ(y)dt

t

)p/2

≤ Cµ(X)−p/2+1

(∫
cOn+1

∫

Ωx

|f(y, t)|2 dµ(y)dt

tα+1
dµ(x)

)p/2

≤ Cµ(X)−p/2+1

(∫
cOn+1

(SΩ,α(f)(x))2dµ(x)

)p/2

≤ Cµ(X)

≤ Cµ(On) (by Lemma 2)

≤ C||SΩ,α(f)||pLp(dµ) (by the Chebycheff’s inequality).

Thus, for k > n, we have as before∑

k,j

λp
k,j ≤ C||SΩ,α(f)||pLp(dµ),

and the proof is complete.
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