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STABILITY OF GENERALIZED QUADRATIC
MAPPINGS IN FUZZY NORMED SPACES \

Eunyoung Son*, Kil-Woung Jun**, and Hark-Mahn Kim***

Abstract. In this paper we consider a generalized form of qua-
dratic functional equations and establish new theorems about the
generalized Hyers–Ulam stability of the generalized form of qua-
dratic equations in fuzzy normed spaces.

1. Introduction

One of the interesting questions in the theory of functional analysis
concerning the stability problem of functional equations is as follows:
when is it true that a mapping satisfying approximately a functional
equation must be close to an exact solution of the given functional equa-
tion? The first stability problem was raised by S. M. Ulam [16] during
his talk at the University of Wisconsin in 1940. For very general func-
tional equations, the concept of stability for functional equations arises
when we replace the functional equation by an inequality which acts as
a perturbation of the equation. Thus the stability question of functional
equations is that how do the solutions of the inequality differ from those
of the given functional equation?

Following [2, 11], we present a fuzzy norm and a fuzzy normed space
as follows.

Definition 1.1. Let X be a real linear spaces. A function N :
X × R → [0, 1](so-called fuzzy subset) is said to be a fuzzy norm on X
if for all x, y ∈ X and all s, t ∈ R,

Received September 10, 2009; Accepted August 30, 2010.
2010 Mathematics Subject Classification: Primary 39B82; Secondary 46S40,

46S50.
Key words and phrases: fuzzy normed spaces, generalized Hyers–Ulam stability,

fixed point alternative.
Correspondence should be addressed to Hark-Mahn Kim, hmkim@cnu.ac.kr

\This study was financially supported by research fund of Chungnam National
University in 2008.



412 Eunyoung Son, Kil-Woung Jun, and Hark-Mahn Kim

• (N1) N(x, c) = 0 for c ≤ 0;
• (N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
• (N3) N(cx, t) = N(x, t

|c|) for c 6= 0;
• (N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
• (N5) N(x, ·) is a nondecreasing function on R and limt→∞N(x, t)

= 1.

The pair (X, N) is called a fuzzy normed linear space. Note that
the fuzzy normed linear space (X, N) is exactly a Menger probabilistic
normed linear space (X,N,4) when 4 := min . It is a locally convex
first countable Hausdorff linear topological space [9, 15].

Let (X, N) be a fuzzy normed linear space. A sequence {xn} in
X is said to be convergent to x ∈ X if limn→∞N(xn − x, t) = 1 for
all t > 0. In this case x is called the limit of the sequence {xn} and
we denote it by x = N − limn→∞ xn. A sequence {xn} in X is called
Cauchy if for each ε > 0 and each t > 0, there exists n0 ∈ N such that
N(xn+p − xn, t) > 1− ε for all n ≥ n0 and all p > 0.

It is known that every convergent sequence in a fuzzy normed linear
space is Cauchy. The fuzzy normed linear space (X,N) is said to be
complete if every Cauchy sequence in X is convergent and the fuzzy
normed linear space (X, N) is called a fuzzy Banach space. For the
various definitions, properties and continuity on a fuzzy normed space
we refer to [3, 13, 14] for the reader.

Now we consider a mapping Q satisfying the following functional
equation, which is introduced in [7],

n∑

i=1

riQ




n∑

j=1

rj(xi − xj)


 +

(
n∑

i=1

ri

)
Q

(
n∑

i=1

rixi

)
(1.1)

=

(
n∑

i=1

ri

)2 n∑

i=1

riQ(xi)

for all vectors x1, · · · , xn and any fixed r1, · · · , rn ∈ (0,∞), where n ≥ 2
is a positive integer. As a special case, if ri = 1 in (1.1) for all i =
1, · · · , n, then the functional equation (1.1) reduces to

n∑

i=1

Q




n∑

j=1

(xi − xj)


 + nQ

(
n∑

i=1

xi

)
= n2

n∑

i=1

Q(xi),

which is exactly equivalent to the quadratic functional equation Q(x +
y)+Q(x−y) = 2Q(x)+2Q(y) [6]. It is well-known [1] that a mapping Q
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between real linear spaces satisfies the quadratic functional equation if
and only if there is a unique symmetric biadditive mapping B such that
Q(x) = B(x, x) for all x. Let B be a symmetric biadditive mapping.
Then the quadratic mapping Q given by Q(x) := B(x, x) satisfies the
equation (1.1). For this reason, the equation (1.1) is a generalized form
of the quadratic functional equation. We observe that if a mapping
Q : X → Y with Q(0) = 0 satisfies the equation (1.1) then Q(Lkx) =
L2kQ(x) for any vector x ∈ X and every integer k ∈ Z, where L :=∑n

i=1 ri.

Recently, fuzzy stability results concerning Cauchy, Jensen, quadratic
and cubic functional equations in fuzzy normed linear spaces were in-
vestigated in [11, 13, 14]. In this paper we are going to investigate the
generalized Hyers–Ulam stability problem that an approximate mapping
satisfying approximately the functional equation (1.1) in fuzzy normed
linear spaces can be approximated in a fuzzy sense by a true mapping
satisfying exactly the equation (1.1). As a result, we obtain a better es-
timation than the result of Theorem 2.1 [12] for stability phenomenon in
the fuzzy normed spaces. In Section 2, we study the generalized Hyers–
Ulam stability problem using direct method by iteration. In Section 3,
we investigate the generalized Hyers–Ulam stability problem using fixed
point alternative by contraction mappings.

2. Stability of the equation (1.1) by direct method

For notational convenience, given a mapping f : X → Y , we define
the difference operator Df : Xn → Y of the equation (1.1) by

Df(x1, · · · , xn) :=
n∑

i=1

rif




n∑

j=1

rj(xi − xj)




+

(
n∑

i=1

ri

)
f

(
n∑

i=1

rixi

)
−

(
n∑

i=1

ri

)2 n∑

i=1

rif(xi)

for all n-variables x1, · · · , xn ∈ X, where n ≥ 2 and L :=
∑n

i=1 ri. which
acts as a perturbation of the equation (1.1). Throughout this section,
we assume that X is a linear space, (Y, N) is a fuzzy Banach space and
(Z, N ′) is a fuzzy normed space. Moreover, we assume that N(x, ·) is a
left continuous function on R.
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Theorem 2.1. Assume that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(Df(x1, x2, · · · , xn), t) ≥ N ′(ϕ(x1, · · · , xn), t)(2.1)

and ϕ : Xn → Z is a mapping for which there is a constant l ∈ R
satisfying 0 < |l| < L2 such that

N ′(ϕ(Lx1, · · · , Lxn), t) ≥ N ′(lϕ(x1, · · · , xn), t)(2.2)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a unique
mapping Q : X → Y satisfying the equation DQ(x1, x2, · · · , xn) = 0
and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

ϕ(x, · · · , x)
L(L2 − |l|) , t

)
, t > 0(2.3)

for all x ∈ X.

Proof. We observe from (2.2) that

N ′(ϕ(Ljx1, · · · , Ljxn), t) ≥ N ′(ljϕ(x1, · · · , xn), t)

= N ′
(

ϕ(x1, · · · , xn),
t

|l|j
)

,

N ′(ϕ(Ljx1, · · · , Ljxn), |l|jt) ≥ N ′(ϕ(x1, · · · , xn), t), t > 0(2.4)

for all x1, · · · , xn ∈ X. Now, substituting x for x1, · · · , xn in the func-
tional inequality (2.1), we obtain

N(Lf(Lx)− L3f(x), t) ≥ N ′(ϕ(x, · · · , x), t),

or, N

(
f(x)− f(Lx)

L2
,

t

L3

)
≥ N ′(ϕ(x, · · · , x), t)(2.5)

for all x ∈ X. Therefore it follows from (2.4), (2.5) with Ljx in place of
x, that

N

(
f(Ljx)

L2j
− f(Lj+1x)

L2(j+1)
,
|l|jt

L3L2j

)
≥ N ′(ϕ(x, · · · , x), t)
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for all x ∈ X and any integer j ≥ 0. So

N


f(x)− f(Lkx)

L2k
,

k−1∑

j=0

|l|jt
L3L2j




= N




k−1∑

j=0

(
f(Ljx)

L2j
− f(Lj+1x)

L2(j+1)

)
,
k−1∑

j=0

|l|jt
L3L2j




≥ min
0≤j≤k−1

{
N

(
f(Ljx)

L2j
− f(Lj+1x)

L2(j+1)
,
|l|jt

L3L2j

)}

≥ N ′(ϕ(x, · · · , x), t), t > 0,

which yields

N


f(Lmx)

L2m
− f(Lk+mx)

L2(k+m)
,
k−1∑

j=0

|l|j+mt

L3L2(j+m)




≥ N ′(ϕ(Lmx, · · · , Lmx), |l|mt)
≥ N ′(ϕ(x, · · · , x), t), t > 0(2.6)

for all x ∈ X and any integers k > 0,m ≥ 0. Hence one obtains

N

(
f(Lmx)

L2m
− f(Lk+mx)

L2(k+m)
, t

)
(2.7)

≥ N ′
(

ϕ(x, · · · , x),
t

∑k−1
j=0

|l|j+m

L3L2(j+m)

)

for all x ∈ X and any integers k > 0, m ≥ 0,t > 0. Since
∑∞

j=0
|l|j
L2j is

convergent series, we see by taking the limit m →∞ in the last inequality
that a sequence

{
f(Lkx)

L2k

}
is Cauchy in the fuzzy Banach space (Y, N)

and so it converges in Y . Therefore a mapping Q : X → Y defined by

Q(x) := N − lim
k→∞

f(Lkx)
L2k

is well defined for all x ∈ X. It means that lim
k→∞

N
(

f(Lkx)
L2k −Q(x), t

)

= 1, t > 0. In addition, we see from (2.7) that

N

(
f(x)− f(Lkx)

L2k
, t

)
≥ N ′

(
ϕ(x, · · · , x),

t
∑k−1

j=0
|l|j

L3L2j

)
,(2.8)
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and so

N (f(x)−Q(x), t)(2.9)

≥ min
{

N

(
f(x)− f(Lkx)

L2k
, (1− ε)t

)
, N

(
f(Lkx)

L2k
−Q(x), εt

)}

≥ N ′
(

ϕ(x, · · · , x),
t

∑k−1
j=0

|l|j
L3L2j

)
,

≥ N ′ (ϕ(x, · · · , x), εL(L2 − |l|)t) , 0 < ε < 1,

for sufficiently large k and for all x ∈ X, t > 0. Since ε is arbitrary and
N ′ is left continuous, we obtain

N (f(x)−Q(x), t) ≥ N ′ (ϕ(x, · · · , x), L(L2 − |l|)t) , t > 0

for all x ∈ X.
In addition it is clear from (2.7) and (N5) that the following relation

N

(
Df(Lkx1, · · · , Lkxn)

L2k
, t

)
≥ N ′

(
ϕ(Lkx1, · · · , Lkxn), L2kt

)

≥ N ′
(

ϕ(x1, · · · , xn),
L2k

|l|k t

)

→ 1 as k →∞
holds for all x1, · · · , xn ∈ X, t > 0. Therefore, we obtain in view of
lim

k→∞
N

(
f(Lkx)

L2k −Q(x), t
)

= 1 (t > 0),

N(DQ(x1, · · · , xn), t)

≥ min
{

N
(
DQ(x1, · · · , xn)− Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)
,

N
(Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)}

= N
(Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)
(for sufficiently large k)

≥ N ′
(
ϕ(x1, · · · , xn),

L2k

|l|k
t

2

)
, t > 0

→ 1 as k →∞
which implies DQ(x1, · · · , xn) = 0 by (N2). Thus we find that Q is a
mapping satisfying the equation (1.1) and the inequality (2.3) near the
approximate quadratic mapping f : X → Y .
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To prove the afore-mentioned uniqueness, we assume now that there
is another mapping Q′ : X → Y which satisfies the inequality (2.3).
Then one establishes by the equality Q′(Lkx) = L2kQ′(x) and (2.3) that

N(Q(x)−Q′(x), t) = N

(
Q(Lkx)

L2k
− Q′(Lkx)

L2k
, t

)

≥ min
{

N

(
Q(Lkx)

L2k
− f(Lkx)

L2k
,
t

2

)
, N

(
f(Lkx)

L2k
− Q′(Lkx)

L2k
,
t

2

)}

≥ N ′
(

ϕ(Lkx, · · · , Lkx),
L(L2 − |l|)L2kt

2

)

≥ N ′
(

ϕ(x, · · · , x),
L(L2 − |l|)L2kt

2|l|k
)

, t > 0, ∀k ∈ N

which tends to 1 as k → ∞ by (N5). Therefore one obtains Q(x)
−Q′(x) = 0 for all x ∈ X, completing the proof of uniqueness. ¤

Theorem 2.2. Assume that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(Df(x1, x2, · · · , xn), t) ≥ N ′(ϕ(x1, · · · , xn), t)(2.10)

and ϕ : Xn → Z is a mapping for which there is a constant l ∈ R
satisfying |l| > L2 such that

N ′
(
ϕ(

x1

L
, · · · ,

xn

L
), t

)
≥ N ′

(
1
l
ϕ(x1, · · · , xn), t

)
(2.11)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a unique
mapping Q : X → Y satisfying the equation DQ(x1, x2, · · · , xn) = 0
and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

ϕ(x, · · · , x)
L(|l| − L2)

, t

)
, t > 0(2.12)

for all x ∈ X.

Proof. It follows from (2.5) and (2.11) that

N

(
f(x)− L2f(

x

L
),

t

L|l|
)
≥ N ′(ϕ(x, · · · , x), t), t > 0

for all x ∈ X. Therefore it follows that

N


f(x)− L2kf(

x

Lk
),

k−1∑

j=0

L2j

L|l|j+1
t


 ≥ N ′(ϕ(x, · · · , x), t), t > 0
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for all x ∈ X and any integers k > 0. Thus we see from the last
inequality that

N
(
f(x)− L2kf(

x

Lk
), t

)
≥ N ′


ϕ(x, · · · , x),

t∑k−1
j=0

L2j

L|l|j+1




≥ N ′(ϕ(x, · · · , x), L(|l| − L2)t), t > 0.

The remaining assertion goes through by the similar way to corre-
sponding part of Theorem 2.1. ¤

We obtain the following corollaries concerning the stability for ap-
proximate mappings controlled by a sum of powers of norms.

Corollary 2.3. Let X be a normed space and (R, N ′) a fuzzy
normed space. Assume that there exist real numbers θ ≥ 0 and p ∈
R \ {2} such that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

N(Df(x1, x2, · · · , xn), t) ≥ N ′(θ(
n∑

i=1

‖xi‖p), t)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a unique
mapping Q : X → Y satisfying the equation DQ(x1, x2, · · · , xn) = 0
and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

nθ‖x‖p

L(|Lp − L2|) , t
)

, t > 0

for all x ∈ X.

We obtain the following corollaries concerning the stability for ap-
proximate mappings controlled by a product of powers of norms.

Corollary 2.4. Let X be a normed space and (R, N ′) a fuzzy
normed space. Assume that there exist real numbers θ ≥ 0 and pi ∈ R
with p :=

∑n
i=1 pi 6= 2 such that a mapping f : X → Y with f(0) = 0

satisfies the inequality

N(Df(x1, x2, · · · , xn), t) ≥ N ′(θ
n∏

i=1

‖xi‖pi , t)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a unique
mapping Q : X → Y satisfying the equation DQ(x1, x2, · · · , xn) = 0
and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

θ‖x‖p

L(|Lp − L2|) , t
)

, t > 0
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for all x ∈ X.

Corollary 2.5. Assume that there exist a real number θ ≥ 0 such
that a mapping f : X → Y with f(0) = 0 satisfies the inequality

N(Df(x1, x2, · · · , xn), t) ≥ N ′(θ, t)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a unique
mapping Q : X → Y satisfying the equation DQ(x1, x2, · · · , xn) = 0
and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

θ

L(L2 − 1)
, t

)
, t > 0

for all x ∈ X.

We remark that if θ = 0, then N(Df(x1, x2, · · · , xn), t) ≥ N(0, t) = 1
and so Df(x1, x2, · · · , xn) = 0. Thus we get f = Q is itself a quadratic
mapping.

3. Stability of the equation (1.1) by fixed point method

Now, in the next theorem we are going to consider a stability problem
concerning the stability of the equation (1.1) by using a fixed point
theorem of the alternative for contractions on a generalized complete
metric space due to B. Margolis and J.B. Diaz [8].

Theorem 3.1. Assume that there exist constants l ∈ R and q > 0
satisfying 0 < |l| 1q < L2 such that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N

(
Df(x1, x2, · · · , xn),

n∑

i=1

ti

)
≥ min

1≤i≤n
{N ′(ϕ(xi), t

q
i )}(3.1)

for all xi ∈ X, and ti > 0 (i = 1, · · · , n) and ϕ : X → Z is a mapping
satisfying

ϕ(Lx) = lϕ(x)(3.2)

for all x ∈ X. Then there exists a unique mapping Q : X → Y satisfying
the equation DQ(x1, x2, · · · , xn) = 0 and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

nq

Lq(L2 − |l| 1q )q
ϕ(x), t

)
, t > 0(3.3)

for all x ∈ X. Furthermore, if a mapping r → f(rx) is continuous in
r ∈ R for each fixed x ∈ X, then Q(rx) = r2Q(x) for all r ∈ R.
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Proof. We consider the set

Ω := {g : X → Y | g(0) = 0}
and define a generalized metric on Ω as follows

dΩ(g, h) := inf
{

K ∈ (0,∞] | N(g(x)− h(x),Kt) ≥ N ′(ϕ(x), tq),

∀ x ∈ X, t > 0
}

.

Then one can easily see that (Ω, dΩ) is a complete generalized metric
space [5, 10].

Now, we define an operator J : Ω → Ω as

Jg(x) =
g(Lx)

L2
,

for all g ∈ Ω, x ∈ X.
We first prove that J is strictly contractive on Ω. For any g, h ∈ Ω,

let ε ∈ [0,∞] be any constant with dΩ(g, h) ≤ ε. Then we deduce from
use of (3.2) that if dΩ(g, h) ≤ ε,

=⇒ N(g(x)− h(x), εt) ≥ N ′(ϕ(x), tq),

=⇒ N

(
g(Lx)

L2
− h(Lx)

L2
,
|l| 1q
L2

εt

)
≥ N ′(ϕ(Lx), |l|tq) = N ′(ϕ(x), tq),

=⇒ N(Jg(x)− Jh(x),
|l| 1q
L2

εt) ≥ N ′(ϕ(x), tq), ∀ x ∈ X, t > 0,

=⇒ dΩ(Jg, Jh) ≤ |l| 1q
L2

ε.

Since ε is arbitrary constant with dΩ(g, h) ≤ ε, we see that for any
g, h ∈ Ω,

dΩ(Jg, Jh) ≤ |l| 1q
L2

dΩ(g, h),

which implies J is strictly contractive with constant |l|
1
q

L2 < 1 on Ω.
We now want to show that d(f, Jf) < ∞. If we put xi := x, ti :=

t(i = 1, · · · , n) in (3.1), then we arrive at

N

(
f(x)− f(Lx)

L2
,

n

L3
t

)
≥ N ′(ϕ(x), tq),

which yields dΩ(f, Jf) ≤ n
L3 , and so dΩ(Jkf, Jk+1f) ≤ dΩ(f, Jf) ≤ n

L3

for all k ∈ N.
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Using the fixed point theorem of the alternative for contractions on a
generalized complete metric space due to B. Margolis and J.B. Diaz [8],

(i) we see that there is a mapping Q : X → Y with Q(0) = 0 such
that

dΩ(f, Q) ≤ 1

1− |l|
L2

dΩ(f, Jf) ≤ n

L(L2 − |l| 1q )

and Q is a fixed point of the operator J, that is, 1
L2 Q(Lx) = JQ(x) =

Q(x) for all x ∈ X. Thus we can get

N

(
f(x)−Q(x),

n

L(L2 − |l| 1q )
t

)
≥ N ′(ϕ(x), tq),

N(f(x)−Q(x), t) ≥ N ′
(

ϕ(x),

(
L(L2 − |l| 1q )

n

)q

tq

)

for all t > 0 and all x ∈ X;
(ii) we find that dΩ(Jkf, Q) → 0 as k →∞. Thus we obtain

N

(
f(Lkx)

L2k
−Q(x), t

)
= N

(
f(Lkx)−Q(Lkx), L2kt

)

≥ N ′
(

nqϕ(Lkx)

Lq(L2 − |l| 1q )q
, L2qktq

)

= N ′
(

nqϕ(x)

Lq(L2 − |l| 1q )q
,

(
L2q

|l|
)k

tq

)

→ 1 as k →∞,

(
L2q

|l| > 1
)

for all t > 0 and all x ∈ X, that is,

N − lim
k→∞

f(Lkx)
L2k

= Q(x)

for all x ∈ X. In addition, it follows from the condition (3.2) and (N4)
that

N

(
Df(Lkx1, · · · , Lkxn)

L2k
, t

)
≥ min

1≤i≤n

{
N ′

(
ϕ(Lkxi),

L2qktq

nq

)}

= min
1≤i≤n

{
N ′

(
|l|kϕ(xi),

L2qktq

nq

)}
(3.4)
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= min
1≤i≤n

{
N ′

(
ϕ(xi),

(L2q

|l|
)k tq

nq

)}

→ 1 as k →∞, t > 0

for all x ∈ X. Therefore we obtain by way of (N4) and (3.4)

N(DQ(x1, · · · , xn), t)

≥ min
{

N
(
DQ(x1, · · · , xn)− Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)
,

N
(Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)}

= N
(Df(Lkx1, · · · , Lkxn)

L2k
,
t

2

)
(for sufficiently large k)

= min
1≤i≤n

{
N ′

(
ϕ(xi),

(L2q

|l|
)k tq

2qnq

)}

→ 1 as k →∞, t > 0,

which implies DQ(x1, · · · , xn) = 0 by (N2) and so the mapping Q sat-
isfies the equation (1.1).

(iii) we know that the mapping Q is a unique fixed point of the
operator J in the set ∆ = {g ∈ Ω| dΩ(f, g) < ∞}. Thus if we assume that
there exists another Euler–Lagrange type quadratic mapping q : X → Y
satisfying the inequality (3.3) then

q(x) =
q(Lx)

L2
= Jq(x)

and so q is a fixed point of the operator J. In view of (3.3) and the
definition of dΩ, we deduce that

dΩ(f, q) ≤ n

L(L2 − |l| 1q )
< ∞,

viz., q ∈ ∆ = {g ∈ Ω| dΩ(f, g) < ∞}. By the uniqueness of the fixed
point of J in ∆, we find that Q = q, which proves the uniqueness of Q
satisfying the inequality (3.3). This ends the proof of the theorem.

We remark that if n = 2, ri = 1(i = 1, 2), L = 2 = l, q > 1
2 and

ϕ(x) = x in a special case, then the estimation (3.3) is better than that
of Theorem 2.1 in the paper [12].

Theorem 3.2. Assume that there exist constants l ∈ R and q > 0
satisfying 0 < |l| 1q > L2 such that a mapping f : X → Y with f(0) = 0
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satisfies the inequality

N

(
Df(x1, x2, · · · , xn),

n∑

i=1

ti

)
≥ min

1≤i≤n
{N ′(ϕ(xi), t

q
i )}

for all xi ∈ X, and ti > 0 (i = 1, · · · , n) and ϕ : X → Z is a mapping
satisfying

ϕ(Lx) = lϕ(x)

for all x ∈ X. Then there exists a unique mapping Q : X → Y satisfying
the equation DQ(x1, x2, · · · , xn) = 0 and the inequality

N(f(x)−Q(x), t) ≥ N ′
(

nq

Lq(|l| 1q − L2)q
ϕ(x), tq

)
, t > 0

for all x ∈ X. Furthermore, if a mapping r → f(rx) is continuous in
r ∈ R for each fixed x ∈ X, then Q(rx) = r2Q(x) for all r ∈ R.

Proof. The proof of this theorem is similar to that of Theorem 3.1.

4. Conclusion

It is important to consider the problem to study the best possible es-
timation of the difference f(x)−Q(x) in stability problem of nonlinear
functional equations [4]. We therefore establish the generalized Hyers–
Ulam stability of the functional equation (1.1) in the fuzzy normed
spaces and thus we provide an improved possible estimation of the differ-
ence f(x)−Q(x) in stability problem of quadratic functional equations.
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