The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel

실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구

  • Choi, Jae-Hyung (Department of Chemical Engineering, Pukyong National University) ;
  • Park, Yong-Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Suk-Hee (Department of Chemical Engineering, Pukyong National University) ;
  • Cheon, Jae-Kee (Department of Chemical Engineering, Pukyong National University) ;
  • Woo, Hee-Chul (Department of Chemical Engineering, Pukyong National University)
  • 최재형 (부경대학교 화학공학과) ;
  • 박용범 (부경대학교 화학공학과) ;
  • 이석희 (부경대학교 화학공학과) ;
  • 천재기 (부경대학교 화학공학과) ;
  • 우희철 (부경대학교 화학공학과)
  • Received : 2010.05.26
  • Accepted : 2010.06.16
  • Published : 2010.10.31

Abstract

Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

유리지방산 함량이 높은 원료의 효율적인 바이오디젤 생산을 위해 다양한 고체산 촉매를 사용하여 회분식 반응기에서 유리지방산의 에스터화 반응에 대한 연구를 수행하였다. 고체산 촉매는 상용 촉매인 황산기를 지닌 이온교환수지(Amberlyst-15, Dowex 50Wx8)와 실리카겔에 술폰기 및 염화술폰기 지닌 산성 이온성 액체가 고정화된 촉매($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$), 단순히 실리카겔에 술폰기 및 염화술폰기의 산성적 기능기를 도입한 촉매들을 사용하여 반응특성을 비교하였다. 또한 에스터화 반응 실험변수로써 반응시간, 온도, 반응물간의 몰 비율(메탄올:올레산), 촉매량에 대한 영향을 조사하였다. 사용된 고체산 촉매들 중 실리카겔에 고정화된 알릴이미다졸리움을 포함한 산성 이온성 액체 촉매가 가장 우수한 반응성을 나타내었다. 특히 실리카겔에 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate가 고정화된 $SiO_2-[ASBI][HSO_4]$ 촉매가 같은 반응조건에서 기존의 알려진 Amberlyst-15보다 더 나은 성능을 보였으며, 353 K 반응온도와 5 wt%의 촉매량, 메탄올/올레산의 몰 비율 20의 조건에서 2시간 동안 약 96%의 높은 전환율을 나타내었다. $SiO_2-[ASBI][HSO_4]$의 높은 촉매 활성은 실리카에 고정화된 강한 브뢴스테드산의 작용기에 기인한 것으로 생각된다. 바이오디젤로부터 촉매의 분리 및 회수는 간단한 경사법 혹은 여과법에 의해 쉽게 분리할 수 있고, 이를 회수하여 재사용이 가능하다.

Keywords

References

  1. Park, J. I., Woo, H. C. and Lee, J. H., "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(5), 833-844(2008).
  2. Hong, Y. K. and Hong, W. H., "Biodiesel Production Technology and Its Fuel Properties," Korean Chem. Eng. Res. (HWAHAKKONGHAK), 45(5), 424-432(2007).
  3. Ma, F. and Hanna, M. A., "Biodiesel Production: a Review," bioresource Tech., 70, 1-15(1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  4. Koh, T. S. and Chung, K. H., "Production of Biodiesel from Waste Frying Oil by Transesterification on Zeolite Catalysts with Different Acidity," J. Korean Ind. Eng. Chem., 19(2), 214-221 (2008).
  5. Nalan, O., Nuray, O. N. and Alper, T., "Esterification of Free Fatty Acids in Waste Cooking Oils (WCO): Role of Ion-exchange Resins," Fuel, 87, 1789-1798(2008). https://doi.org/10.1016/j.fuel.2007.12.010
  6. Berchmans, H. J. and Hirata, S., "Biodiesel Production from Crude Jatropha Curcas L. Seed Oil with a High Content of Free Fatty Acids," Bioresource Tech., 99, 1716-1721(2008). https://doi.org/10.1016/j.biortech.2007.03.051
  7. Melero, J. A., Iglesias, J. and Morales, G., "Heterogeneous Acid Catalysts for Biodiesel Production: Current Status and Future Challenges," Green Chem., 11, 1285-1308(2009). https://doi.org/10.1039/b902086a
  8. Lee, J. S. and Park, S. C., "Recent Developments and Challenging Issues of Solid Catalysts for Biodiesel Production," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 48(1), 10-15(2010).
  9. Lee, H. J., Lee, J. S., Ahn, B. S. and Kim, H. S., "Technology Trend in Ionic Liquids," J. Korean Ind. Eng. Chem., 16, 595-602 (2005).
  10. Sheldon, R., "Catalytic Reactions in Ionic Liquids," Chem. Commun., 2399-2407(2001).
  11. Gordon, C. M., "New Developments in Catalysis using Ionic Liquids," Appl. Catal. A Gen., 222, 101-117(2001). https://doi.org/10.1016/S0926-860X(01)00834-1
  12. Shim, H. L., Lee, M. K., Yu, J. I. and Park, D. W., "Cycloaddition of Carbon Dioxide to Allyl Glycidyl Ether using Silica-supported Ionic Liquid as a Catalyst," Clean Tech., 14, 166-170(2008).
  13. Hubert, V. M., Emmanuelle, S., Paulo, D. C. C. and Friedrich, H. W., "Immobilized Ionic Liquids," EP Patent No. 1, 230, 023(2001).
  14. Qiao, K., Hagiwara, H. and Yokoyama, C., "Acidic Ionic Liquid Modified Silica Gel as Novel Solid Catalysts for Esterification and Nitration Reactions," J. Mol. Catal. A Chem., 246, 65-69(2006). https://doi.org/10.1016/j.molcata.2005.07.031
  15. Karimi, B. and Khalkhali, M., "Solid Silica-based Sulfonic Acid as an Efficient and Recoverable Interphase Catalyst for Selective Tetrahydropyranylation of Alcohols and Phenols," J. Mol. Catal. A Chem., 232, 113-117(2005). https://doi.org/10.1016/j.molcata.2005.01.028
  16. KS H 356, "Essential Oils-Preparation of Test Samples," KATS (2008).
  17. KS H 1242, "Essential Oils-Determination of Acid Value," KATS (2008).
  18. Wu, Q., Chen, H., Han, M., Wang, D. and Wang, J., "Transesterification of Cottonseed Oil Catelyzed by Bronsted Acidic Ionic Liquids," Ind. Eng. Chem. Res., 46, 7955-7960(2007). https://doi.org/10.1021/ie070678o
  19. Furuta, S., Matsuhashi, H. and Arata, K., "Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor under Atmospheric Pressure," Catal. Commun., 5, 721-723(2004). https://doi.org/10.1016/j.catcom.2004.09.001
  20. Di Serio, M., Tesser, R., Dimiccoli, M., Cammarota, F., Nastasi, M. and Santacesaria, E., "Synthesis of Biodiesel via Homogeneous Lewis Acid Catalyst," J. Mol. Catal. A Chem., 239, 111-115 (2005). https://doi.org/10.1016/j.molcata.2005.05.041
  21. Choi, J. D., Kim, D. K., Park, J. Y., Rhee, Y. W. and Lee, J. S., "Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production," Korean Chem. Eng. Res. (HWAHAKKONGHAK), 46(1), 194-199(2008).
  22. Kim, D. K., Choi, J. D., Park, J. Y., Lee, J. S., Park, S. B. and Park, S. C., "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47(6), 762-767(2009).