감마선 조사가 휴민산 염소화에 의한 THMs 생성능 및 수질특성에 미치는 영향

Effect of γ-ray Irradiation on THMs Formation and Water Quality Characteristics in the Chlorination of Humic Acid Contaming Water

  • 강철호 (전주대학교 환경보건학과) ;
  • 임현우 (전주대학교 환경보건학과) ;
  • 정성운 (전주대학교 환경보건학과) ;
  • 최종혁 (전주대학교 환경보건학과) ;
  • 김종훈 (전주대학교 환경보건 전문연구소) ;
  • 최용욱 (전주대학교 환경보건 전문연구소) ;
  • 이면주 (한국원자력연구원 방사선과학연구소)
  • Kang, Chul-ho (Department of Environmental Science, Jeonju University) ;
  • Lim, Hyun-woo (Department of Environmental Science, Jeonju University) ;
  • Jung, Sung-woon (Department of Environmental Science, Jeonju University) ;
  • Choi, Jong-hyuk (Department of Environmental Science, Jeonju University) ;
  • Kim, Jong-hoon (Specialized Institute of Environmental Health Science) ;
  • Choi, Yong-wook (Specialized Institute of Environmental Health Science) ;
  • Lee, Myun-joo (Radiation Research Center of Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 투고 : 2010.09.27
  • 심사 : 2010.11.04
  • 발행 : 2010.11.30

초록

Variation of formation potential of THM (THMFP) by chlorination of humic acid and characteristics of water quality with ${\gamma}$-ray irradiation were investigated, which were divided into two categories by the order of ${\gamma}$-ray irradiation and chlorination in water treatment process. The group A consisted of the ${\gamma}$-ray irradiation followed by chlorination process of humic acid, and the group B consisted of the chlorination followed by ${\gamma}$-ray irradiation process. The pH, ORP, $UV_{254}$, and DOC decreased rapidly with an increase in ${\gamma}$-ray irradiation of 3 kGy. while conductivity was little changed. Maximum degradation ratio of chloroform in THMs of group A was 82%, while that in group B was 69%. No brominated THMs were detected at high irradiation (>3 kGy). We found that group A water treatment process was more effective in lowering the THMFP than that of group B.

키워드

참고문헌

  1. 과학기술부(2003). 방사선 이용 환경처리 기술개발.
  2. 과학기술부(2006). 전자가속기 이용 염색폐수 처리시설 구축.
  3. 국립환경과학원(2006). 수돗물에서의 미량 유해물질 관리방안연구.
  4. 김미숙, 김철규(2001). 대청호 수중 퇴적물로부터 분리된 Humic Substance의 특성 연구. 한국수처리기술연구회지, 9(4), pp. 45-54.
  5. 김유리, 한범수, 김진규, 강호(2004). 전자선을 이용한 하수처리장 방류수내 대장균군 살균. 수질보전 한국물환경학회지, 20(4), pp. 376-381.
  6. 김평청, 최용일, 우달식, 남상호(1998). 클로라민 소독특성에 관한 연구. 춘계학술발표회논문집, 대한환경공학회지, pp. 127-130.
  7. 손희종, 노재순, 배상대, 최영익, 정철우(2007). 낙동강 원수에서 추출한 Humic Acid에서의 염소처리에 의한 THM 생성 특성 평가. 대한환경공학회지, 29(4), pp. 412-418.
  8. 손희종, 노재순, 정철우, 이철우, 강입석(2004a). 상수원수중에 함유된 천연유기물질 분자량 크기가 염소 소독부산물 생성에 미치는 영향. 대한환경공학회지, 26(11), pp. 1278-1290.
  9. 손희종, 정철우, 강임석(2004b). 상수원수중의 천연유기물질 특성과 염소 소독부산물 생성의 관계. 대한환경공학회지, 26(4), pp. 457-466.
  10. 오현제(1998). 우리나라 실정에 적합한 고도정수처리기술의 개발과 활용. 한국건설기술연구원.
  11. 이동석(2002). 수질계의 Humic Acid 와 Fulvic Acid의 분리 및 특성. 분석과학회지, 15(1), pp. 36-42.
  12. 이면주, 정영도, 박순달(1998). 감마선 조사를 이용한 하수처리장 방류수 처리에 관한 연구. 대한위생학회지, 13(2), pp. 106-114.
  13. 이오미, 김해연, 김태훈, 이면주, 유승호(2009). UV-C, VUV, Ozone 및 Gamma ray 에 의한 병원성 미생물의 불화성화. Applied Chemistry, 13(1), pp. 109-112.
  14. 이윤진, 이선종, 이동찬, 김현, 이환, 이철효, 남상호(2002). 정수소독공정에 이용되는 염소 이산화염소, 오존 소독제의 비교, 고찰에 관한 연구. 한국환경위생학회지, 28(3), pp. 1-8.
  15. 최규철(I995). 수질오염공정시험법, 동화기술.
  16. 한국원자력연구원(2000). 방사선의 공업적 이용기술개발, 과학기술부.
  17. 한국원자력연구원(2007). 방사선이용 환경처리 기술개발, 과학기술부.
  18. Akihisa, S. and Hidehiko, A. (1985). Development of techniques in radiation treatment of water. Radioisotopes, 34, pp. 570-590. https://doi.org/10.3769/radioisotopes.34.10_570
  19. Ashbolt, N. J. (2004). Risk analysis of dinking water microbial contamination versus disinfection by-products(DBPs). Toxicology, 198(1-3), pp. 255-262. https://doi.org/10.1016/j.tox.2004.01.034
  20. Buchanan, W., Roddick, F., and Porter, N. (2006). Formation of hazardous by-products resulting from the irradiation of natural organic matter : Comparison between UV and VUV irradiation. Chemosphere, 63, pp. 1130-1141. https://doi.org/10.1016/j.chemosphere.2005.09.040
  21. Chen, Z., Yang. C., Lu, J., Zou, H., and Zhang, J. (2001). Factors on the formation of disinfection by-products MX, DCA and TCA by chlorination of fulvic acid from lake sediments. Chemosphere, 45, pp. 379-385. https://doi.org/10.1016/S0045-6535(00)00549-X
  22. da Silva, W. T. L., da Silva, S. C., and de OHveira Rezende, M. O. (1997). Influence of gamma-radiation on the behavior of humic acis from peat and tropical soil. J. Radioanal Nucl. Chem., 222, pp. 29-34. https://doi.org/10.1007/BF02034242
  23. Doull, J., Klaassen, C. D., and Amdur, M. O. (1997). Toxicology. 8th ed. Macmillan publishing Co., New York. U.S.A.
  24. Goraczko, W. and Slawinski, J. (2008). Luminescence from $\gamma$-irra-diated humic acid. J. Luminescence, 128(7), pp. 1155-1161. https://doi.org/10.1016/j.jlumin.2007.11.084
  25. Krasner, S. w. (1999). Chemistry of disinfection by-product formation, formation and control of disinfection by-Products in drinking water, P. C. Singer (ed.), AWWA, pp. 27-52.
  26. Kronherg, L. (1999). Water treatment practice and the formation of genotoxic chlorohydroxyfurnones. Water Sci. & Technol, 40(9), pp. 31-36. https://doi.org/10.1016/S0273-1223(99)00637-X
  27. Luchini, L. C., Peres, T. B., and Rezende, M. O. ( 1998). Degradation of the insecticide parathion in methanol by gamma-irradiation. J. Radioanal Nucl. Chem., 241(1), pp. 191-194.
  28. Singer. P. C., Obolensky, A., and Greiner, A. (1995). DBPs in chlorinated North CaroIins drinking waters. J. AWWA, 87(10), pp.83.
  29. Takeda, A. (1988). Utilization of radiation on treatment of raw water. Radioisotopes, 37, pp. 416-422. https://doi.org/10.3769/radioisotopes.37.7_416
  30. Xu, X., Zou, H., and Zhang, J. (1997). Formation of strong mutagen [3-chloro-4-(dichloromethy)-5-hydroxy-2(5H)-furanone] MX by chlorination of fractions of Jake water. Water Research, 31(15), pp. 1021-1026.
  31. Zhang, J., Zheng, Z., Zhaoa, T., Zhaoa, Y., Wang, L., Zhonga, Y., and Xua, Y. (2008). Radiation-induced reduction of diuron by gamma-ray irradiation. J. Hazardous Materials, 151, pp. 465-472. https://doi.org/10.1016/j.jhazmat.2007.06.007