DOI QR코드

DOI QR Code

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W. (Department of Chemical and Material Engineering, School of Engineering, The University of Auckland) ;
  • Gao, W. (Department of Chemical and Material Engineering, School of Engineering, The University of Auckland)
  • Published : 2010.02.28

Abstract

This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

Keywords

References

  1. X. Y. Kong and Z. L. Wang, Nano Lett. 3, 1625 (2003) [DOI:10.1021/nl034463p].
  2. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, NanoLett. 6, 1719 (2006) [DOI: 10.1021/nl061080t].
  3. R. Bardhan, H. Wang, F. Tam, and N. J. Halas, Langmuir 23, 5843(2007) [DOI: 10.1021/la070146c].
  4. K. S. Leschkies, A. G. Jacobs, D. J. Norris, and E. S. Aydil, Appl.Phys. Lett. 95, 193103 (2009) [DOI: 10.1063/1.3258490].
  5. Y. K. Kim, S. J. Park, J. P. Koo, G. T. Kim, S. H. Hong, and J. S. Ha,Nanotechnology 18, 015304 (2007) [DOI: 10.1088/0957-4484/18/1/015304].
  6. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano Lett. 8, 1219(2008) [DOI: 10.1021/nl080340z].
  7. Z. L. Wang, ACS Nano 2, 1987 (2008) [DOI: 10.1021/nn800631r].
  8. B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong,and T. Yu, Adv. Mater. 21, 2436 (2009) [DOI: 10.1002/adma.200803684].
  9. R. Wang, C. Ruan, D. Kanayeva, K. Lassiter, and Y. Li, Nano Lett.8, 2625 (2008) [DOI: 10.1021/nl080366q].
  10. T. S. Kang, A. P. Smith, B. E. Taylor, and M. F. Durstock, NanoLett. 9, 601 (2009) [DOI: 10.1021/nl802818d].
  11. A. Vomiero, I. Concina, M. M. Natile, E. Comini, G. Faglia, M.Ferroni, I. Kholmanov, and G. Sberveglieri, Appl. Phys. Lett. 95,193104 (2009) [DOI: 10.1063/1.3257370].
  12. W. Gao and Z. Li, Int. J. Nanotechnol. 6, 245 (2009) [DOI:10.1504/IJNT.2009.022917].
  13. P. Oliveira, M. L. Rojas-Cervantes, A. M. Ramos, I. M. Fonseca, A.M. B. do Rego, and J. Vital, Catal. Today 118, 307 (2006) [DOI:10.1016/j.cattod.2006.07.032].
  14. E. Zhan, Y. Li, J. Liu, X. Huang, and W. Shen, Catal. Commun. 10,2051 (2009) [DOI: 10.1016/j.catcom.2009.07.029].
  15. C. Bluthardt, C. Fink, K. Flick, A. Hagemeyer, M. Schlichter, and A.Volpe Jr., Catal. Today 137, 132 (2008) [DOI: 10.1016/j.cattod.2008.04.045].
  16. S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J.Sainio, E. D. Obraztsova, S. N. Bokova, A. N. Obraztsov, and E. I.Kauppinen, Nanotechnology 20, 165603 (2009) [DOI: 10.1088/0957-4484/20/16/165603].
  17. F. Li, D. I. Son, S. H. Cho, W. T. Kim, and T. W. Kim,Nanotechnology 20, 155202 (2009) [DOI: 10.1088/0957-4484/20/15/155202].
  18. F. Li, S. H. Cho, D. I. Son, T. W. Kim, S. K. Lee, Y. H. Cho, and S. H.Jin, Appl. Phys. Lett. 94, 111906 (2009) [DOI: 10.1063/1.3098400].
  19. H. Zeng, X. Xu, Y. Bando, U. K. Gautam, T. Zhai, X. Fang, B. Liu,and D. Golberg, Adv. Funct. Mater. 19, 3165 (2009) [DOI:10.1002/adfm.200900714].
  20. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)[DOI: 10.1126/science.1058120].
  21. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303, 1348(2004) [DOI: 10.1126/science.1092356].
  22. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang,Science 309, 1700 (2005) [DOI: 10.1126/science.1116495].
  23. S. W. Choi, J. Y. Park, and S. S. Kim, Nanotechnology 20, 465603(2009) [DOI: 10.1088/0957-4484/20/46/465603].
  24. X. Zhang, Y. Chen, C. Jia, Y. Su, Q. Li, L. liu, T. Gou, and M. Wei, J.Phys. Chem. C 113, 13689 (2009) [DOI: 10.1021/ jp903713g].
  25. R. C. Wang and H. Y. Lin, Appl. Phys. A 95, 813 (2009) [DOI:10.1007/s00339-009-5079-4].
  26. F. Xu, V. Volkov, Y. Zhu, H. Bai, A. Rea, N. V. Valappil, W. Su, X.Gao, I. L. Kuskovsky, and H. Matsui, J. Phys. Chem. C 113, 19419(2009) [DOI: 10.1021/jp903813h].
  27. M. Agrawal, S. Gupta, A. Pich, N. E. Zafeiropoulos, and M.Stamm, Chem. Mater. 21, 5343 (2009) [DOI: 10.1021/cm9028098].
  28. J. Y. Park, S. W. Choi, J. W. Lee, C. M. Lee, and S. S. Kim, J. Am.Ceram. Soc. 92, 2551 (2009) [DOI: 10.1111/j.1551-2916.2009.03270.x].
  29. Y. Yang, D. S. Kim, Y. Qin, A. Berger, R. Scholz, H. Kim, M. Knez,and U. Gosele, J. Am. Chem. Soc. 131, 13920 (2009) [DOI:10.1021/ja906120a].
  30. L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, J. Phys. Chem. C111, 18451 (2007) [DOI: 10.1021/jp077593l].
  31. D. Mustafa, D. Biggemann, J. Wu, J. L. Coffer, and L. R. Tessler,Superlattices Microstruct. 42, 403 (2007) [DOI: 10.1016/j.spmi.2007.04.042].
  32. S. Z. Li, C. L. Gan, H. Cai, C. L. Yuan, J. Guo, P. S. Lee, and J. Ma,Appl. Phys. Lett. 90, 263106 (2007) [DOI: 10.1063/1.2752020].
  33. V. E. Kaydashev, E. M. Kaidashev, M. Peres, T. Monteiro, M. R.Correia, N. A. Sobolev, L. C. Alves, N. Franco, and E. Alves, J.Appl. Phys. 106, 093501 (2009) [DOI: 10.1063/1.3253572].
  34. C. W. Zou, X. D. Yan, J. Han, R. Q. Chen, J. M. Bian, E. Haemmerle,and W. Gao, Chem. Phys. Lett. 476, 84 (2009) [DOI: 10.1016/j.cplett.2009.06.024].
  35. X. Yan, Z. Li, R. Chen, and W. Gao, Cryst. Growth Des. 8, 2406(2008) [DOI: 10.1021/cg7012599].
  36. C. W. Zou, X. D. Yan, J. Han, R. Q. Chen, and W. Gao, J. Phys. D:Appl. Phys. 42, 145402 (2009) [DOI: 10.1088/0022-3727/42/14/145402].
  37. F. Zhou, X. Zhao, Y. Liu, C. Yuan, and L. Li, Eur. J. Inorg. Chem.2008, 2506 (2008) [DOI: 10.1002/ejic.200800148].
  38. K. Takahashi, Y. Wang, and G. Cao, Appl. Phys. Lett. 86, 053102(2005) [DOI: 10.1063/1.1857087].
  39. R. T. R. Kumar, E. McGlynn, M. Biswas, R. Saunders, G. Trolliard,B. Soulestin, J. R. Duclere, J. P. Mosnier, and M. O. Henry, J. Appl.Phys. 104, 084309 (2008) [DOI: 10.1063/1.2996279].
  40. Z. Zhu, T. L. Chen, Y. Gu, J. Warren, and R. M. Osgood, Chem.Mater. 17, 4227 (2005) [DOI: 10.1021/cm050584+].
  41. W. Lee, M. C. Jeong, and J. M. Myoung, Acta Mater. 52, 3949(2004) [DOI: 10.1016/j.actamat.2004.05.010].
  42. Z. Wang, X. Liu, J. Gong, H. Huang, S. Gu, and S. Yang, Cryst.Growth Des. 8, 3911 (2008) [DOI: 10.1021/cg800588q].
  43. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao,J. Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin,A. Behrends, M. Al-Suleiman, A. El-Shaer, A. C. Mofor, B. Postels,A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. L.S. Dang, Nanotechnology 20, 332001 (2009) [DOI: 10.1088/0957-4484/20/33/332001].
  44. S. Y. Zhan, C. Z. Wang, K. Nikolowski, H. Ehrenberg, G. Chen, andY. J. Wei, Solid State Ionics 180, 1198 (2009) [DOI: 10.1016/j.ssi.2009.05.020].
  45. E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett. 9, 2322 (2009)[DOI: 10.1021/nl900676n].
  46. J. M. Velazquez and S. Banerjee, Small 5, 1025 (2009) [DOI:10.1002/smll.200801278].
  47. M. G. Willinger, G. Neri, E. Rauwel, A. Bonavita, G. Micali, and N.Pinna, Nano Lett. 8, 4201 (2008) [DOI: 10.1021/nl801785b].
  48. A. M. Glushenkov, V. I. Stukachev, M. F. Hassan, G. G. Kuvshinov,H. K. Liu, and Y. Chen, Cryst. Growth Des. 8, 3661 (2008) [DOI:10.1021/cg800257d].
  49. Y. Wang, Z. Zhang, Y. Zhu, Z. Li, R. Vajtai, L. Ci, and P. M. Ajayan,ACS Nano 2, 1492 (2008) [DOI: 10.1021/nn800223s].
  50. W. G. Menezes, D. M. Reis, T. M. Benedetti, M. M. Oliveira, J. F.Soares, R. M. Torresi, and A. J. G. Zarbin, J. Colloid Interface Sci.337, 586 (2009) [DOI: 10.1016/j.jcis.2009.05.050].
  51. A. Dhayal Raj, T. Pazhanivel, P. Suresh Kumar, D. Mangalaraj, D.Nataraj, and N. Ponpandian, Curr. Appl. Phys. 10, 531 (2010)[DOI: 10.1016/j.cap.2009.07.015].
  52. D. Liu, Y. Liu, B. B. Garcia, Q. Zhang, A. Pan, Y. H. Jeong, and G.Cao, J. Mater. Chem. 19, 8789 (2009) [DOI: 10.1039/b914436f].
  53. S. Putluru, A. Riisager, and R. Fehrmann, Catal. Lett. 133, 370(2009) [DOI: 10.1007/s10562-009-0176-8]
  54. S. L. Chou, J. Z. Wang, J. Z. Sun, D. Wexler, M. Forsyth, H. K. Liu, D. R. MacFarlane, and S. X. Dou, Chem. Mater. 20, 7044 (2008) [DOI: 10.1021/cm801468q].
  55. M. C. Wu and C. S. Lee, J. Solid State Chem. 182, 2285 (2009)[DOI: 10.1016/j.jssc.2009.05.042].
  56. X. K. Hu, D. K. Ma, J. B. Liang, S. L. Xiong, J. Y. Li, and Y. T. Qian,Chem. Lett. 36, 560 (2007) [DOI: 10.1246/cl.2007.560].
  57. C. O. Avellaneda, Mater. Sci. Eng., B 138, 118 (2007) [DOI:10.1016/j.mseb.2006.06.007].
  58. F. N. Dultsev, L. L. Vasilieva, S. M. Maroshina, and L. D.Pokrovsky, Thin Solid Films 510, 255 (2006) [DOI: 10.1016/j.tsf.2005.12.264].
  59. A. Sidorov, O. Vinogradova, V. Lyubimov, and A. Nashchekin,Tech. Phys. Lett. 34, 133 (2008) [DOI: 10.1007/s11455-008-2014-6].
  60. C. Piccirillo, R. Binions, and I. P. Parkin, Chem. Vap. Deposition 13,145 (2007) [DOI: 10.1002/cvde.200606540].
  61. C. W. Zou, X. D. Yan, D. A. Patterson, E. A. C. Emanuelsson, J. M.Bian, and W. Gao, CrystEngComm (2010 In press) [DOI:10.1039/b916614a].
  62. K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interface Sci. 283,482 (2005) [DOI: 10.1016/j.jcis.2004.09.009].
  63. S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, and S.H. Han, Appl. Phys. Lett. 89, 253512 (2006) [DOI: 10.1063/1.2410240].
  64. C. H. Ku and J. J. Wu, Appl. Phys. Lett. 91, 093117 (2007) [DOI:10.1063/1.2778454].
  65. C. Kim, K. S. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem. 18,5809 (2008) [DOI: 10.1039/b805091k].
  66. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt,and P. Yang, J. Phys. Chem. B 110, 22652 (2006) [DOI:10.1021/jp0648644].
  67. S. Wu, H. Han, Q. Tai, J. Zhang, B. L. Chen, S. Xu, C. Zhou, Y. Yang,H. Hu, and X. Z. Zhao, Appl. Phys. Lett. 92, 122106 (2008) [DOI:10.1063/1.2903105].
  68. S. S. Kim, J. H. Yum, and Y. E. Sung, J. Photochem. Photobiol. A:Chem. 171, 269 (2005) [DOI: 10.1016/j.jphotochem.2004.10. 019].
  69. J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng, and I. C. Chen, J. Cryst.Growth 281, 384 (2005) [DOI: 10.1016/j.jcrysgro.2005.04. 018].
  70. Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, C. S. Lao, J. H.Song, J. Y. Gan, and Z. L. Wang, Adv. Mater. 19, 143 (2007) [DOI:10.1002/adma.200601830].
  71. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang,W. Chen, and S. X. Wang, Appl. Phys. Lett. 78, 1125 (2001) [DOI:10.1063/1.1350959]
  72. Y. Hu, Z. Li, Z. Zhang, and D. Meng, Appl. Phys. Lett. 94, 103107(2009) [DOI: 10.1063/1.3095502].
  73. Y. Wang, Z. Li, X. Sheng, and Z. Zhang, J. Chem. Phys. 126, 164701(2007) [DOI: 10.1063/1.2722746].
  74. T. Minami, T. Utsubo, T. Miyata, and Y. Suzuki, Thin Solid Films445, 377 (2003) [DOI: 10.1016/s0040-6090 (03)01186-6].
  75. K. K. Kim, S. D. Lee, H. S. Kim, J. C. Park, S. N. Lee, Y. S. Park, S. J.Park, and S. W. Kim, Appl. Phys. Lett. 94, 071118 (2009) [DOI:10.1063/1.3077606].
  76. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M.Mackie, and H. Shen, Appl. Phys. Lett. 90, 203515 (2007) [DOI:10.1063/1.2741052].
  77. M. Kurzawa, I. Rychlowska‐Himmel, M. Bosacka, and A. Blonska-Tabero, J. Therm. Anal. Calorim. 64, 1113 (2001) [DOI: 10.1023/A:1011524424682].
  78. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang,and S. J. Chua, J. Appl. Phys. 98, 013505 (2005) [DOI:10.1063/1.1940137].
  79. X. Zhang, D. Liu, L. Zhang, W. Li, M. Gao, W. Ma, Y. Ren, Q. Zeng,Z. Niu, W. Zhou, and S. Xie, J. Mater. Chem. 19, 962 (2009) [DOI:10.1039/b815518f].
  80. H. H. Patterson, J. Cheng, S. Despres, M. Sunamoto, and M.Anpo, J. Phys. Chem. 95, 8813 (1991) [DOI: 10.1021/j100175a072].
  81. S. G. Zhang, S. Higashimoto, H. Yamashita, and M. Anpo, J. Phys.Chem. B 102, 5590 (1998) [DOI: 10.1021/jp981230r].

Cited by

  1. Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition vol.14, pp.3, 2013, https://doi.org/10.4313/TEEM.2013.14.3.148
  2. Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films vol.108, pp.2, 2012, https://doi.org/10.1007/s00339-012-6890-x
  3. Subzero Temperature Dip-Coating of Sol-Gel Vanadium Pentoxide: Effect of the Deposition Temperature on the Film Structure, Morphology, and Electrochromic Properties vol.2016, 2016, https://doi.org/10.1155/2016/4595869
  4. Thickness dependent supercapacitor behaviour of sol-gel spin coated nanostructured vanadium pentoxide thin films vol.93, pp.13, 2013, https://doi.org/10.1080/14786435.2012.745654
  5. Microstructure and enhanced photoluminescence of ZnO/V2O5 composite vol.31, pp.16-19, 2017, https://doi.org/10.1142/S0217979217440519
  6. Analog Performance Analysis of Self-cascode Structure with Native-VthMOSFETs vol.26, pp.8, 2013, https://doi.org/10.4313/JKEM.2013.26.8.575
  7. Synthesis and characterization of ZnO/TiO2 composite core/shell nanorod arrays by sol–gel method for organic solar cell applications vol.38, pp.3, 2015, https://doi.org/10.1007/s12034-015-0898-8
  8. Studies of phase formation from the ZnO–CdO–V2O5 ternary system vol.386, 2014, https://doi.org/10.1016/j.jnoncrysol.2013.11.039
  9. Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: An experimental and DFT investigation vol.434, 2014, https://doi.org/10.1016/j.chemphys.2014.02.007
  10. Synthesis of a visible-light active V2O5–g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material vol.39, pp.2, 2015, https://doi.org/10.1039/C4NJ01807A
  11. Fabrication of Multilayer ZnO/TiO2/ZnO Thin Films with Enhancement of Optical Properties by Atomic Layer Deposition (ALD) vol.465-466, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.465-466.916