DOI QR코드

DOI QR Code

센서 네트워크에서 전송범위와 전송방향을 이용한 에너지 효율적인 라우팅 프로토콜

An Energy Efficient Routing Protocol using Transmission Range and Direction for Sensor Networks

  • 이현준 (선문대학교 컴퓨터정보학과) ;
  • 이영한 (선문대학교 컴퓨터정보학과) ;
  • 이경오 (선문대학교 컴퓨터공학부)
  • 발행 : 2010.02.28

초록

센서네트워크에서 센서는 배터리에 의해 작동이 되며 배터리의 수명이 다하면 더 이상 동작을 할 수 없다. 센서가 수집한 데이터는 효과적인 경로를 통해 싱크노드로 전달되어야 하며 이를 위한 여러 라우팅 알고리즘이 제안되었다. 하지만, 기존의 알고리즘은 데이터를 전송하는데 있어서 전송범위와 전송방향을 고려하지 않기 때문에 많은 노드들이 데이터 전송에 참여하게 되고 결과적으로 많은 에너지를 소모한다. 본 논문에서는 센서 네트워크에서의 효과적인 데이터 전송을 위해 전송범위와 전송방향을 고려한 라우팅 알고리즘인 TDRP(Transmission range and Direction Routing Protocol)를 제안한다. TDRP는 클러스터 또는 그리드를 생성하지 않고, 싱크노드를 중심으로 사분면을 형성하여 패킷의 전송방향을 결정하는 방법으로 네트워크 오버헤드가 적으며, 패킷의 전송방향에 위치하는 노드들 만이 통신에 참여하므로, 에너지 효율성이 기존의 알고리즘들보다 뛰어 나다.

Sensors in sensor networks are operated by their embedded batteries and they can not work any more if the batteries run out. The data collected by sensors should be transferred to a sink node through the efficient routes. Many energy efficient routing algorithms were proposed. However, the previous algorithms consume more energy since they did not consider the transmission range and direction. In this paper we propose an algorithm TDRP(Transmission range and Direction Routing Protocol) that considers the transmission range and direction for the efficient data transmission. Since TDRP does not produce clusters or grids but four quadrants and send data to the nodes in one quadrant in the direction of the sink node, it has less network overhead. Furthermore since the proposed algorithm sends data to the smaller number of nodes compared to the previous algorithms, the energy efficiency is better than other algorithms in communication node fields that are located in packet transmit directions.

키워드

참고문헌

  1. B Karp, "GPSR: Greedy Perimeter Stateless routing for Wireless Networks," Mobicom., pp.243-254, 2000.
  2. Tijs van Dam, Koen Langendoen, "An adaptive energy Efficient MAC Protocl for Wireless sensor networks," In 21st Conf. of the IEEE Computer and Communications Soc. INFOCOM, pp.1567-1576, 2002.
  3. Jaiyong Lee, "Energy Efficient Geographical Time Backoff Routing for wireless Sensor Networks," RFID/USN Korea 2005 International Conference, Seoul, korea, Oct., 14, Track 5, Session1, 2005.
  4. Jeffrey P. Monks, Jean-Pierre Ebert, Adam Wolisz, Wen-mei W.Hwu, "A Study of the energy Saving and Capacity Improvement Potential of Power Control in Multi-hop Wireless Networks," in Proc. of Local Computer Networks 26th Annual IEEE Conference, pp.550-559, 2001.
  5. Katja Schwieger, Gerhard Fettweis, "Power and Energy Consumption for Multi-Hop Protocols : A sensor network Point of View," in International Workshop in Wireless Ad-Hoc Networks, London,.Session I-a [Sensor Networks], 2005.
  6. Heungsik Eom, Keonwook Kim, "Study of Efficient EnergyManagement for Ubiquitous sensor networks with Optimization of the RF power," IEEK. pp.37-42, 2007.
  7. Swetha Narayanaswamy, Vikas Kawadia, R. S. Sreenivas and P. R. Kumar, "Power Control in Ad-Hoc Networks : Theory, Achitecture, algorithm and Implementation of the COMPOW Protocol," in Proc, Eur, Wireless Conf. pp.156-162, 2002.
  8. Wei Ye, John Heidemann, Deborah Estrin. "Medium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks," IEEE / ACM Trans. on Networking, pp.493-506, 2004.
  9. Rappaport, Theodore S, "Wireless Communications Priciple and Practice," 2nd edition, Prentice Hall, 2005.
  10. SON Dongjin, HELMY Ahmed, KRISHNAMACHARI Bhaskar, "The Effect of Mobility-Induced Location Errors on Geographic Routing in Mobile Ad Hoc and Sensor Networks: Analysis and Improvement Using Mobility Prediction," IEEE Trans, Mobile Computing, pp.233-245, 2004.
  11. Menouar, H. Lenardi, M. Filali, F. "Movement predictionbased routing (MOPR) concept for position-based routing in vehicular networks," in Proc, IEEE WiVec, pp.2101-2105, 2007.
  12. P. Bahl, V. N. Padmanabhan. RADARL: An in-building RF-based user location and tracking system. In Proc. IEEE Infocom, pp.775-784, 2000.
  13. N. Bulusu, J. Heidemann, D. Estrin, "GPS less Low Cost Outdoor Localization for Very Small Devices," IEEE Personal Communications Magazine, pp.23-34, 2000.
  14. T. He, C. Huang, B.M. Blum, J.A. Stankovic and T. Abdelzaher, "Range Free Localization Schemes for Large Scale Sensor Networks," ACM International Conference on Mobile Computing and Netwo king, pp.81-95, 2003.
  15. H. Yan, H. Han-ying, Z. Shan, "A TOA Based Believable Factor Mobile Location Algorithm," IEEE Wireless Communications and Networking Conference, pp.260-263, 2004.
  16. L. Cong, W. Zhuang, "Non-Line-of-Sight Error Mitigation in TDOA Mobile Location," IEEE Global Telecommunications Conference, pp.680-684, 2001.
  17. V. Ramadurai, M.L. Sichitiu, "Localization in Wireless Sensor Networks: A Probabilistic Approach," In Proceeding of 2003 International Conference on Wireless Networks, pp.300-305, 2003.
  18. Broch, J., Maltz, D., Johnson, D., HU, Y., Jetcheva, J. A "performance comparison of multi-hop wireless ad hoc network routing protocols," In Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom '98) (Dallas, Texas, USA, Aug., 1998).
  19. 이좌형, 정인범 "센서 네트워크에서 홈에이젼트와 액세스 노드에 기반한 모바일 싱크를 위한 데이터 전송 기법" 정보처리학회논문지C, Vol.15-C, No.5, pp.383-390, 2008. https://doi.org/10.3745/KIPSTC.2008.15-C.5.383
  20. 안상현, 임유진, 김만희 "무선 센서 네트워크의 데이터 전송특성을 고려한 효율적인 플러딩 기법" 정보처리학회논문지C, Vol.16-C, No.2, pp.209-216, 2009. https://doi.org/10.3745/KIPSTC.2009.16-C.2.209
  21. 남도현, 민홍기 "센서 네트워크에서 클러스터 헤드의 loadbalancing을 통한 에너지 효율적인 클러스터링" 정보처리학회논문지C, Vol.14-C, No.3, pp.277-284, 2007. https://doi.org/10.3745/KIPSTC.2007.14-C.3.277