DOI QR코드

DOI QR Code

얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web

  • Eom, Tae-Sung (Dept. of Architecture, Catholic University of Daegu) ;
  • Park, Hong-Gun (Dept. of Architecture, Seoul National University) ;
  • Kim, Jae-Yo (Dept. of Architectural Engineering, Kwangwoon University)
  • 발행 : 2010.02.28

초록

이 연구에서는 얇은 두께의 복부를 갖는 세장한 벽체의 변형능력을 평가하였다. 벽체의 주요한 파괴 모드로서 휨항복 이후 비탄성거동을 보이는 벽체에서 주로 관찰되는 복부압괴와 철근인장파단을 고려하였다. 길이 방향 인장변형은 벽체의 파괴변형에 중요한 영향을 미치므로, 트러스모델을 기반으로 단조하중 및 주기하중을 받는 벽체에 발생되는 길이 방향 인장변형률을 예측하였다. 예측된 길이 방향 인장변형을 고려하여 복부압괴 및 철근인장파단에 의한 벽체의 파괴기준을 정립하였다. 제안된 방법을 사용하여 단면 양단부에 단부요소를 갖는 17개 실험벽체의 변형능력을 평가하고 그 결과를 실험값과 비교하였다. 제안된 방법은 실험벽체의 파괴 모드와 변형능력을 합리적이면서 보수적으로 예측하는 것으로 나타났다.

In the present study, the deformation capacity of slender shear walls with thin web subject to inelastic deformation after flexural yielding was studied. Web-crushing and rebar-fracture were considered as the governing failure mechanisms of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

키워드

참고문헌

  1. 대한건축학회, "건축구조설계기준 2005," KBC 2005, 대한건축학회, 2005, 597 pp.
  2. ACI Committee 318, Building Code Requirements and Commentary for Reinforced Concrete (ACI 318-05), American Concrete Institute, Detroit, 2005, 430 pp.
  3. American Society of Civil Engineers, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Reston, Va., 2000.
  4. Oesterle, R. G., Fiorato, A. E., Johal, L. S., Carpenter, J. E., Russell, H. E., and Corley, W. G., " Earthquake Resistant Structural Walls-Tests of Isolated Walls," Report to the National Science Foundation, Construction Technology Laboratories, Portland Cement Associaton, Skokie, 1976, 315 pp.
  5. Sittipunt, C. and Wood, L. S., "Influence of Web Reinforcement on the Cyclic Response of Structural Walls," ACI Structural Journal, Vol. 92 No. 6, 1995, pp. 745-756.
  6. Wood, S. L., "Minimum Tensile Reinforcement Requirements in Walls," ACI Structural Journal, Vol. 86, No. 4, 1989, pp. 582-591.
  7. Fenwick, R. C. and Megget, L. M., "Elongation and Load Deflection Characteristics of Reinforced Concrete Members Containing Plastic Hinges," Bulletin of NZNSEE, Vol. 26, No. 1, pp. 28-41.
  8. Fenwick, R. C. and Davidson, B. J., "Elongation in Ductile Seismic-Resistant Reinforced Concrete Frames," Recent Developments in Lateral Force Transfer in Buildings, Thomas Paulay Symposium, ACI, 1995, pp. 143-170.
  9. Lee, J. and Watanabe, F., "Shear Deterioration of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading," ACI Structural Journal, Vol. 100, No. 4, 2003, pp. 480-489.
  10. 엄태성, 박홍근, "주기하중을 받는 세장한 철근콘크리트 보의 길이 방향 인장변형," 콘크리트학회 논문집, 20권, 6호, 2008, pp. 785-796.
  11. Vecchio, F. J. and Collins, M. P., "The Modified Compression Field Theory for Reinforced Compression Elements Subjected to Shear," ACI Structural Journal, Vol. 83, No. 2, 1986, pp. 219-231.
  12. Hsu, T. T. C., "Softened Truss Model Theory for Shear and Torsion," ACI Structural Journal, Vol. 85, No. 6, 1988, pp. 624-635.
  13. Maeda, M., Kabeyasawa, T., and Sanada, Y., "Test and Analysis of Reinforced Concrete Beams under Axial Restraint," Proceedings of US-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Hawaii, 1999, pp. 203-215.
  14. Paulay, T. and Priestley, M. J. N., Seismic Design or Reinforced Concrete and Masonry Buildings, New York: J. Wiley and Sons, 1992, 744 pp.
  15. Park, H. and Eom, T., "Truss Model for Nonlinear Analysis of RC Members Subject to Cyclic Loading," Journal of Structural Engineering, ASCE, Vol. 138, No. 10, 2007, pp. 1351-1363.
  16. Foster, S. J. and Gilbert, R. I., "The Design of Non-flexural Members with Normal and High-Strength Concrete," ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 3-10.
  17. Sittipunt, C. and Wood, S. L., "Development of Reinforcement Details to Improve the Cyclic Response of Slender Structural Walls," Proceedings of the 12 th World Conference on Earthquake Engineering, Paper No. 1770, Auckland, New Zealand, 2000.