DOI QR코드

DOI QR Code

HSPDA 모형 및 ADF index를 이용한 상수관망의 신뢰도 산정

Estimation of the Reliability of Water Distribution Systems using HSPDA Model and ADF Index

  • 백천우 ;
  • 전환돈 (서울산업대학교 공과대학 건설공학부) ;
  • 김중훈 (고려대학교 공과대학 건축.사회환경공학부)
  • Baek, Chun-Woo (School of Envir. Systems Eng. & Centre for Ecohydrology, Univ. of Western Australia) ;
  • Jun, Hwan-Don (School of Civil Eng., Seoul National Univ. of Tech.) ;
  • Kim, Joong-Hoon (School of Civil, Envir. and Architect. Eng., Korea Univ.)
  • 발행 : 2010.02.28

초록

본 연구에서는 HSPDA모형을 기반으로 한 상수관망의 신뢰도분석 방안을 제안하였다. 대표적인 상수관망의 신뢰도분석 방법으로는 수량과 수압의 확보가 불가능한 수요절점을 산정하고 필요수량/공급가능수량 혹은 압력확보절점수/전체절점수 등을 계산하여 상수관망이 얼마나 신뢰할 수 있는가를 판단하는 것이 있다. 이를 계산하기 위해서는 수리모형을 이용한 상수관망의 모의가 필요하나 절점의 압력과는 상관없이 항상 모든 용수량은 공급가능하다는 가정을 사용하는 Demand-Driven Analysis (DDA) 를 신뢰도 분석에 사용할 경우 신뢰도가 과소 산정될 수 있으며, 절점수요는 절점수두에 비례한다는 가정을 사용하는 Pressure-Driven Analysis (PDA)의 적용이 필요하다. 그러나 기존에 수행된 많은 연구에서는 관망의 특성에 따라 제한적인 적용성을 가지는 PDA 모형과 semi-PDA모형이 비정 상운영상태의 상수관망 수리모의에 이용되었고 이로 인하여 정확한 상수관망의 신뢰도 산정이 어려웠다. 본 연구에서는 기존의 PDA모형의 가지는 단점을 보완한 HSPDA 모형과 Available Demand Fraction (ADF) 지수를 이용하여 상수관망의 신뢰도 산정이 가능한 모형을 제안하였다. HSPDA를 활용하여 상수관망의 비정상운영상태를 모의하고, 이를 이용하여 절점별 ADF 지수를 산정, 상수관망의 신뢰도를 산정하였다. 제안된 신뢰도분석기법을 대상관망에 적용하여 기존의 연구결과와 비교하였으며, 이를 바탕으로 수립 가능한 신뢰도 확보방안을 제시하였다.

In this study, new methodology to estimate the reliability of a water distribution system using HSPDA model is suggested. In general, the reliability of a water distribution system can be determined by estimating either the ratio of the required demand to the available demand or the ratio of the number of nodes with sufficient pressure head to the number of nodes with insufficient pressure head when the abnormal operating condition occurs. To perform this approach, hydraulic analysis under the abnormal operating condition is essential. However, if the Demand-Driven Analysis (DDA) which is dependant on the assumption that the required demand at a demand node is always satisfied regardless of actual nodal pressure head is used to estimate the reliability of a water distribution system, the reliability may be underestimated due to the defect of the DDA. Therefore, it is necessary to apply the Pressure-Driven Analysis (PDA) having a different assumption to the DDA's which is that available nodal demand is proportion to nodal pressure head. However, because previous study used a semi-PDA model and the PDA model which had limited applicability depending on the characteristics of a network, proper estimation of the reliability of a water distribution system was impossible. Thus, in this study, a new methodology is suggested by using HSPDA model which can overcome weak points of existing PDA model and Available Demand Fraction (ADF) index to estimate the reliability. The HSPDA can simulate the hydraulic condition of a water distribution system under abnormal operating condition and based on the hydraulic condition simulated, ADF index at each node is calculated to quantify the reliability of a water distribution system. The suggested model is applied to sample networks and the results are compared with those of existing method to demonstrate its applicability.

키워드

참고문헌

  1. 백천우, 전환돈, 김중훈 (2007). “비정상 상태의 상수관망 해석을 위한 HSPDA 모형의 개발.” 대한토목학회논문집, 대한토목학회, 제27권, 제5B호, pp. 475-488.
  2. Andreau, S.A. (1986). Predictive models for pipe break failures and their implications on maintenance planning strategy for deterioration water distribution system, PhD dissertation, MIT, Cambridge, MA.
  3. Ang, W.K. and Jowitt, P.W. (2006). “Solution for water distribution systems under pressure-deficient conditions.” Journal of Water Resources Planning and Management, ASCE, Vol. 132, No. 3, pp. 175-182. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(175)
  4. Asgarpoor, S. and Singh, C. (1992). “A new index for generation capacity reliability studies-expected cost penalty.” Electronic Power Systems Research, Vol. 23, No. 1, pp. 23-29. https://doi.org/10.1016/0378-7796(92)90030-5
  5. Bhave, P.R. (1981). “Node flow analysis of water distribution systems.” Transportation Engineering Journal of ASCE (Proc. Of The ASCE), ASCE, Vol. 107, No. TE4, pp. 457-467.
  6. Billinton, R. and Allan, R.N. (1983). Reliability evaluation of engineering systems: concepts and techniques, Pitman Books Limited, London.
  7. Chandapillai, J. (1991). “Realistic simulation of water distribution system.” Journal of Transportation Engineering, ASCE, Vol. 117, No. 2, pp. 258-263. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(258)
  8. Cullinane, M.J., Lansey, K.E., and Basnet, C. (1989). “Water distribution system design considering component failure during static conditions, Hydraulic engineering.” Proc. of the 1989 National Conference on Hydraulic Engineering, pp. 762-767.
  9. Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). “A new heuristic optimization technique: harmony search.” Simulation, Vol. 14, No. 1, pp. 34-39.
  10. Goulter, I.D., and Coals, A.V. (1986). “Quantitative approaches to reliability assessment in pipe networks.” Journal of Transportation Engineering, ASCE, Vol. 112, No. 3, pp. 287-301. https://doi.org/10.1061/(ASCE)0733-947X(1986)112:3(287)
  11. Goulter, I.D., Walski, T.M., Mays, L.W., Sakarya, B., Bouchart, F., and Tung, Y.K. (2000). “Reliability analysis for design.” Water Distribution System Handbook, Mays, L.W., McGraw-Hill, New York.
  12. Gupta, R., Bhave, P.R. (1996). “Comparison of methods for predicting deficient-network performance.” Journal of Water Resources Planning and Management, ASCE, Vol. 122, No. 3, pp. 214-217. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:3(214)
  13. Jowitt, P.W. and Xu, C. (1993). “Predicting pipe failure effects in water distribution networks.” Journal of Water Resources Planning and Management, ASCE, Vol. 119, No. 1, pp. 18-31. https://doi.org/10.1061/(ASCE)0733-9496(1993)119:1(18)
  14. Jun, H., and Loganathan, G.V. (2007). “Valvecontrolled segments in water distribution systems.” Journal of Water Resources Planning and Management, ASCE, Vol. 133, No. 2, pp. 145-155. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)
  15. Lei, J. and Saegrov, S. (1998). “Statistical approach for describing failures of water mains.” Water Science and Technology, IWA, Vol. 38, No. 6, pp. 209-217. https://doi.org/10.1016/S0273-1223(98)00582-4
  16. Mays, L.W. (1996). “Review of reliability analysis of water distribution systems.” Stochastic Hydraulics '96, K. K. Tickle et al., eds., Balkema, Rotterdam, The Netherlands, pp. 53-62.
  17. Mays, L.W. (2003). Water supply systems security, McGRAW-HILL.
  18. Oday, D.K. (1982). “Organizing and analyzing break data for making water main replacement decisions.” Journal American Water Works Association, AWWA, Vol. 74, No. 11, pp. 588-594.
  19. Ozger, S.S. (2003). A semi-pressure-driven approach to reliability assessment of water distribution network, Ph.D. dissertation, Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona.
  20. Rossman, L.A. (1994). EPANET users manual, Drinking WaterResearch Division, Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH.
  21. Su, Y.C., Mays, L.W., Duan, N. and Lansey, K.E. (1987). “Reliability based optimization model for water distribution systems.” Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 12, pp. 1539-1556. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:12(1539)
  22. Tabesh, M., Tanyimboh, T.T. and Burrows, R. (2001). “Extended period reliability analysis of water distribution systems based on head driven simulation method.” Proc. of World Water Congress 2001, Orlando, Florida, USA. https://doi.org/10.1061/40569(2001)385
  23. Tanyimboh, T.T., and Tabesh, M. (1997a). “Discussion comparison of methods for predicting deficient-network performance.” Journal of Water Resources Planning and Management, ASCE, Vol. 123, No. 6, pp. 369-370. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:6(369)
  24. Tanyimboh, T.T. and Tabesh, M. (1997b). “The basis of the source head method of calculating distribution network reliability.” Proc. of the 3rd International Conference on Water Pipeline System, Hague, Netherlands.
  25. Walski, T.M. (1993). “Water distribution valve topology for reliability analysis.” Reliability Engineering & System Safety, Vol. 42, No. 1, pp. 21-27. https://doi.org/10.1016/0951-8320(93)90051-Y
  26. Walski, T.M. (2002). “Issues in providing reliability in water distribution systems.” Proceedings of the ASCE Environmental and Water Resources Institute (EWRI) Annual Conference, Roanoke, Virginia.
  27. Wu, Z.Y., and Walski, M. (2006). “Pressure-dependent hydraulic modelling for water distribution systems under abnormal conditions.” Proc., IWA World Water Congress and Exhibition, IWA, Beijing, China.
  28. Wu, Z.Y., Wang, R.H., Walski, T.M., Yang, S.Y., and Bowdler, D. (2006). “Efficient pressure dependent demand model for large water distribution system analysis.” Proc., 8th Annual International Symposium on Water Distribution System Analysis, ASCE, Cincinnati, Ohio, USA. https://doi.org/10.1061/40941(247)39
  29. Xu, C., Goulter, I.C. and Member, ASCE (1999). “Reliability-based optimal design of water distribution networks.” Journal of Water Resources Planning and Management, ASCE, Vol. 125, No. 6, pp. 352-362. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(352)

피인용 문헌

  1. Development and Application of Pressure Driven Analysis Model based on EPANET vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.121
  2. Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation vol.20, pp.8, 2018, https://doi.org/10.3390/e20080576
  3. Development and Applications of K-NRisk for Pressure Dependent Demand Analysis in Water Distribution Networks vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.231
  4. Comparative Study of Hydraulic Simulation Techniques for Water Supply Networks under Earthquake Hazard vol.11, pp.2, 2019, https://doi.org/10.3390/w11020333