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IDENTITIES ARISING FROM GAUSS SUMS FOR
SYMPLECTIC AND ORTHOGONAL GROUPS

Hi-joon Chae and Dae San Kim

Abstract. We express Gauss sums for symplectic and orthogonal groups
over finite fields as averages of exponential sums over certain maximal tori.
Together with our previous results, we obtain some interesting identities
involving various classical Gauss and Kloosterman sums.

1. Introduction

In a series of papers [7, 8, 9, 10, 11, 12, 15], the second author considered
Gauss sums for various finite classical groups, which are exponential sums of
the form ∑

g∈GF

χ(det g)λ((tr g)r),

where G is a classical group over a finite field, F is the Frobenius map, GF

denotes the set of fixed points of G under F , and χ (resp. λ) is a multiplicative
(resp. nontrivial additive) character of the finite field. He obtained explicit
expressions of these sums in terms of classical Gauss and Kloosterman sums and
proved some applications. On the other hand, we proved the next formula in [3,
Theorem 3.1], which follows from the representation theory of finite reductive
groups: let ψ be a complex valued class function on G(Fq) whose value depend
only on semisimple part of each element. Then we have

(1)
∑

g∈GF

ψ(g) =
|GF |
|W |

∑

w∈W

1
|TwF |

∑

a∈T wF

ψ(a),

where T is an F -stable maximal torus of G, W = N(T )/T is the Weyl group
of G with respect to T , and wF is the twisted Frobenius map of T given by
wF (t) = wF (t)w−1.

In this paper, we apply the above formula to calculate the Gauss sums
for Sp2n, GSp2n, SO±2n, and SO2n+1 (Theorems 3.1, 3.2, 3.5, 3.6, and 3.7).
Combined with the second author’s previous results cited above, these yield new
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identities involving various classical Gauss and Kloosterman sums (Theorems
4.1, 4.3, and 4.5), which may be of interest in number theory and combinatorics.

Another interesting consequence is the complete relations among Gauss sums
for Sp(2n, q), SO(2n+ 1, q), SO+(2n, q), and SO−(2n, q). Namely, we have the
following identities (Theorem 4.8):

∑

g∈SO(2n+1,q)

λ(tr g) = λ(1)
∑

g∈Sp(2n,q)

λ(tr g),

∑

g∈SO+(2n,q)

λ(tr g) = q−n
∑

g∈Sp(2n,q)

λ(tr g),

∑

g∈SO−(2n,q)

λ(tr g) = −q−n
∑

g∈Sp(2n,q)

λ(tr g).

The first of these was noted in [11, (5.12)]. However, as we confessed at that
time, we didn’t have any philosophical reason that this should be so. Now,
that is an easy consequence of the main formula (1). The second identity
was observed in [15], while the last one was obtained from the old and new
expressions of Gauss sums for SO+(2n, q) and SO−(2n, q). This last identity
would have been found earlier if we pushed ourselves a little further in getting
an expression of Gauss sums for SO−(2n, q), as in Proposition 4.9.

2. Preliminaries and notations

One is referred to [2] and [17] for some elementary facts below. Let Fq be
the finite field with q elements. Then, for each m ∈ Z>0, Fqm denotes the
extension field of degree m of Fq in a fixed algebraic closure Fq of Fq. For each
m ∈ Z>0, Cqm denotes the kernel of the norm map NFq2m/Fqm : F×q2m → F×qm ,
so that

(2) Cqm = {α ∈ Fq2m |αqm+1 = 1}.
Let λ be a nontrivial additive character of Fq, χ a multiplicative character of
Fq, and let χ̃ be a multiplicative character of Fq2 . For each m ∈ Z>0, we put

(3) λ(m) = λ ◦ trFqm/Fq
, χ(m) = χ ◦NFqm /Fq

, χ̃(2m) = χ̃ ◦NFq2m/Fq2 .

To simplify notations, the lifting λ(2) of λ to Fq2 will be denoted by λ′. For
m ∈ Z>0 and γ ∈ F×q , we put

K(λ(m); γ) =
∑

α∈F×
qm

λ(m)(α+ γα−1),(4)

K(λ(m)) = K(λ(m); 1) =
∑

α∈F×
qm

λ(m)(α+ α−1),(5)
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K(λ(2m), χ̃(2m)) =
∑

α∈F×
q2m

χ̃(2m)(α)λ(2m)(α+ α−1),(6)

J(λ(m); γ) =
∑

α∈N−1
F
q2m /Fqm

(γ)

λ(m)(α+ γα−1)(7)

=
∑

α∈N−1
F
q2m /Fqm

(γ)

λ(2m)(α),

J(λ(m)) = J(λ(m); 1) =
∑

α∈Cqm

λ(m)(α+ α−1)(8)

=
∑

α∈Cqm

λ(2m)(α),

J(λ(m), χ̃(2m)) =
∑

α∈Cqm

χ̃(2m)(α)λ(m)(α+ α−1)(9)

=
∑

α∈Cqm

χ̃(2m)(α)λ(2m)(α),

K(λ; γ), K(λ′, χ̃), J(λ; γ), and J(λ, χ̃) are respectively called a Kloosterman
sum, a twisted Kloosterman sum, a unitary Kloosterman sum, and a twisted
unitary Kloosterman sum. The ones in (4), (6), (7), (9) are liftings of those
classical exponential sums. In addition, we need the Gauss sum G(χ, λ) and
the hyperkloosterman sum Km(λ) which are respectively defined by

G(χ, λ) =
∑

α∈F×q
χ(α)λ(α),(10)

Km(λ; γ) =
∑

α1,...,αm∈F×q
λ(α1 + · · ·+ αm + γα−1

1 · · ·α−1
m ),(11)

Km(λ) = Km(λ; 1) =
∑

α1,...,αm∈F×q
λ(α1 + · · ·+ αm + α−1

1 · · ·α−1
m ).(12)

For α ∈ F×q , m ∈ Z>0, we will need the following diagonal matrices:

tm(α) = diag(α, αq, . . . , αqm−1
),(13)

t′m(α) = diag(α, α−q, . . . , α(−q)m−1
).(14)

We now recall some basic terminologies and notations about partitions from
[18]. A partition of a positive integer n is a finite nondecreasing sequence
µ1, . . . , µs of positive integers with

∑s
i=1 µi = n. The partition (µ1, . . . , µs) is

denoted by µ, and we write

(15) µ ` n if µ is a partition of n.
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The µi’s are the parts of µ, and

l(µ) = the number of parts of µ,(16)

|µ| = the sum of parts of µ.(17)

The multiplicity of i in µ ` n is

mi = mi(µ) = |{j |1 6 j 6 s, µj = i}|,
in which case we write

µ = (1m12m2 · · ·nmn).

So
∑n

i=1 imi = n. The set of all partitions of n is denoted by Pn (n ∈ Z>0), and
the set of all partitions

⋃
n∈Z>0

Pn by P. Here P0 consists of a single element,
the ‘empty partition of 0’, which we denote by 0. If µ = (1m12m2 · · ·nmn) is a
partition of n, we write

(18) zµ = 1m12m2 · · ·nmnm1!m2! · · ·mn!.

For µ = 0 ∈ P0, we agree that

(19) l(µ) = 0, |µ| = 0, zµ = 1.

For integers n, r with 0 6 r 6 n, the q-binomial coefficients are defined by
[
n

r

]

q

=
r−1∏

j=0

qn−j − 1
qr−j − 1

.

[y] denotes the greatest integer 6 y for a real number y.

3. Calculation of Gauss sums

In this section we apply the formula (1) to calculate the Gauss sums
∑
λ(tr g)

for symplectic and orthogonal groups. In doing so, since the summand of the
summation over w ∈ W in the right hand side of (1) depends only on the
F -conjugacy class {v−1wF (v) | v ∈ W} of w in W (cf. the proof of [3, The-
orem 3.1]),we will sum over the F -conjugacy classes in W with summands
multiplied by their orders.

3.1. Symplectic groups

Let G = Sp( 2n,Fq) = {g ∈ GL(2n,Fq) | tgJ̃g = J̃ }, with J̃ =
[

0 1n
−1n 0

]
. F

is the standard Frobenius map Frq on G, and GF = Sp(2n, q), with

|Sp(2n, q)| = qn2
n∏

j=1

(q2j − 1).

T = {diagonal matrices in G} = {diag(α1, . . . , αn, α
−1
1 , . . . , α−1

n )} is an F -
stable maximal torus of G which is split over Fq. W = N(T )/T ∼= (Z/2Z)noSn

is the Weyl group with respect to T and F -conjugacy classes in W are just
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conjugacy classes in W , which are in bijective correspondence with the set of
double partitions of n

(20) P(2)
n = { (µ, ν) |µ, ν ∈ P, |µ|+ |ν| = n } (cf. (17)).

Here in P(2)
n the special pairs (0, ν) with ν ∈ Pn or (µ,0) with µ ∈ Pn are

included (cf. (19)).
If the conjugacy class conj(w) of w in W corresponds to the double partition

(µ, ν) =
(
(µ1, . . . , µs), (ν1, . . . , νt)

) ∈ P(2)
n , then, in the notation of (13),

TwF =
{

diag
(
tµ1(α1), . . . , tµs

(αs), tν1(β1), . . . , tνt
(βt),

tµ1(α
−1
1 ), . . . , tµs

(α−1
s , ), tν1(β

−1
1 ), . . . , tνt

(β−1
t )

)∣∣∣

α1 ∈ F×qµ1 , . . . , αs ∈ F×qµs , β1 ∈ Cqν1 , . . . , βt ∈ Cqνt

}

∼= F×qµ1 × · · · × F×qµs × Cqν1 × · · · × Cqνt (cf. (2)),

(21) |conj(w)| = |W |
2l(µ)+l(ν)zµzν

=
2nn!

2l(µ)+l(ν)zµzν
.

Also, we have
∑

a∈T wF

λ(tr a) =
∑

α1∈F×qµ1

λ(µ1)(α1 + α−1
1 ) · · ·

∑

αs∈F×qµs

λ(µs)(αs + α−1
s )

×
∑

β1∈Cqν1

λ(ν1)(β1 + β−1
1 ) · · ·

∑

βt∈Cqνt

λ(νt)(βt + β−1
t )

= K(λ(µ1)) · · ·K(λ(µs))J(λ(ν1)) · · · J(λ(νt))

= (−1)tK(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))

(22)

which follows from (5), (8), and the following fact which is a special case of [5,
(7.2.5)]: for a nontrivial additive character λ of Fq, γ ∈ F×q , and m ∈ Z>0,

(23) J(λ(m); γ) = −K(λ(m); γ).

The next result follows now from (1) and the above.

Theorem 3.1.∑

g∈Sp(2n,q)

λ(tr g)

= qn2
n∏

j=1

(q2j − 1)

×
∑

(µ,ν)∈P(2)
n

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)
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3.2. Symplectic similitude groups

Let G = GSp( 2n,Fq) = {g ∈ GL(2n,Fq) | tgJ̃g = ν(g)J̃ for some ν(g) ∈
F×q }, with J̃ =

[
0 1n
−1n 0

]
. F is the standard Frobenius map Frq on G, so that

GF = GSp(2n, q) = {g ∈ GL(2n, q) | tgJ̃g = ν(g)J̃ for some ν(g) ∈ F×q },
with

|GSp(2n, q)| = (q − 1)qn2
n∏

j=1

(q2j − 1).

T = {diagonal matrices in G} = {diag(α1, . . . , αn, γα
−1
1 , . . . , γα−1

n )} is an F -
stable maximal torus of G which is split over Fq. W = N(T )/T ∼= (Z/2Z)noSn

is the Weyl group with respect to T , and F -conjugacy classes in W are just
conjugacy classes in W .

If conj(w) (w ∈ W ) corresponds to (µ, ν) =
(
(µ1, . . . , µs), (ν1, . . . , νt)

) ∈
P(2)

n (cf. (20)), then, in the notation of (13),

TwF =
{

diag
(
tµ1(α1), . . . , tµs

(αs), tν1(β1), . . . , tνt
(βt),

γtµ1(α
−1
1 ), . . . , γtµs(α

−1
s ), γtν1(β

−1
1 ), . . . , γtνt(β

−1
t )

)∣∣∣
γ ∈ F×q , α1 ∈ F×qµ1 , . . . , αs ∈ F×qµs ,

β1 ∈ N−1

F2ν1
q /Fν1

q

(γ), . . . , βt ∈ N−1

F2νt
q /Fνt

q
(γ)

}
.

Hence ∑

a∈T wF

χ(det a)λ(tr a)

=
∑

γ∈F×q
χn(γ)K(λ(µ1); γ) · · ·K(λ(µs); γ)J(λ(ν1); γ) · · · J(λ(νt); γ)

= (−1)t
∑

γ∈F×q
χn(γ)K(λ(µ1); γ) · · ·K(λ(µs); γ)K(λ(ν1); γ) · · ·K(λ(νt); γ)

(cf. (4), (7), (23)).
The following theorem now follows from (1), (21) and the above.

Theorem 3.2.∑

g∈GSp(2n,q)

χ(det g)λ(tr g)

= qn2
n∏

j=1

(q2j − 1)

×
∑

(µ,ν)∈P(2)
n

(−1)l(ν)
∑

γ∈F×q χ
n(γ)K(λ(µ1); γ) · · ·K(λ(µs); γ)K(λ(ν1); γ) · · ·K(λ(νt); γ)

2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)
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Remark 3.3. Let χn be trivial. Then the sum in the numerator of the summand
of RHS of the above equation is

∑

γ∈F×q
K(λ(µ1); γ) · · ·K(λ(µs); γ)K(λ(ν1); γ) · · ·K(λ(νt); γ),

which, according to [4, Theorem 1], is equal to

q2

q − 1
|A(µ,ν)| −

(qµ1 − 1) · · · (qµs − 1)(qν1 − 1) · · · (qνt − 1)
q − 1

+ 2(−1)l(µ)+l(ν)−1

with

A(µ,ν) =

{
(α1, . . . , αs, β1, . . . , βt) ∈ F×qµ1 × · · · × F×qµs × F×qν1 × · · ·F×qνt

∣∣∣∣∣
s∑

i=1

trFqµi /Fq
(αi) +

t∑

j=1

trF
q

νj /Fq
(βj)

= 0 =
s∑

i=1

trFqµi /Fq
(α−1

i ) +
t∑

j=1

trF
q

νj /Fq
(β−1

j )

}
.

As |A(µ,ν)| is divisible by q − 1, it is an integer, depending only on (µ, ν).

3.3. SO+(2n, q)

Let J+ be the 2n×2n matrix with [ 0 1
1 0 ] along the diagonal blocks and zeros

elsewhere, and let

G = SO+(2n,Fq) = { g ∈ GL(2n,Fq) |tgJ+g = J+, det g = 1}.
If F is the standard Frobenius map Frq on G, GF = SO+(2n, q), with

|SO+(2n, q)| = qn2−n(qn − 1)
n−1∏

j=1

(q2j − 1).

T = {diagonal matrices in G} is an F -stable maximal torus of G which is split
over Fq. The Weyl group W = N(T )/T with respect to T is the subgroup of
W ′ = (Z/2Z)n o Sn consisting of even signed permutations. A signed permu-
tation aσ ∈ W ′, with a = (a1, . . . , an) ∈ (Z/2Z)n = {±1}n, σ ∈ Sn, is called
even (resp. odd) signed if a1 · · · an = 1 (resp. a1 · · · an = −1).
F acts trivially on W , and hence the F -conjugacy classes in W coincide with

conjugacy classes in W . Since [W ′ : W ] = 2, the conjugacy class conjW ′(w) of
each w ∈ W in W ′ is either a single conjugacy class in W or the union of two
conjugacy classes in W . More precisely, we have the following lemma.

Lemma 3.4. Let W ⊂W ′ be as above. The conjugacy class conjW ′(w) of w ∈
W in W ′ coincides with the conjugacy class conjW (w) of w in W , except when
the double partition of n corresponding to conjW ′(w) is of the form (µ,0) ∈
Pn × P0, with µ1, . . . , µs all even. Here µ = (µ1, . . . , µs).
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Proof. Let w = xσ ∈ W with x ∈ (Z/2Z)n, σ ∈ Sn. The conjugacy class
of w in W ′ is a single W -conjugacy class if and only if w = v−1wv for some
v ∈ W ′ −W . This is so if and only if there exist y = (y1, . . . , yn) ∈ (Z/2Z)n

and τ ∈ Sn such that y1 · · · yn = −1, τσ = στ , and y−1 · σy = x−1 · τx, where
σy denotes the action of σ ∈ Sn on y ∈ (Z/2Z)n. The lemma can be deduced
from this observation. ¤

The conjugacy classes conjW ′(w) of w ∈W in W ′ are in bijective correspon-
dence with the subset P(2)

n,e of P(2)
n (cf. (20)) given by

(24) P(2)
n,e = {(µ, ν) ∈ P(2)

n | l(ν) is even}.

Let conjW ′(w) (w ∈W ) correspond to (µ, ν) =
(
(µ1, . . . , µs), (ν1, . . . , νt)

)
, with

t even. Then, as in the case of symplectic group Sp2n,

TwF ∼= F×qµ1 × · · · × F×qµs × Cqν1 × · · · × Cqνt ,

and

1
|TwF |

∑

a∈T wF

λ(tr a) =
K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

.

It is important to observe that the above sum depends only on the conjugacy
classes of w ∈ W in W ′. In the RHS of the following expression, we group
together w’s in the same conjugacy classes in W ′.

∑

g∈SO+(2n,q)

λ(tr g) =
|SO+(2n, q)|

|W |
∑

w∈W

1
|TwF |

∑

a∈T wF

λ(tr a).

Then we obtain the next theorem from (21) and the above calculations. Here
one must note that

|conjW ′(w)| = |W ′|
2l(µ)+l(ν)zµzν

=
2|W |

2l(µ)+l(ν)zµzν
.

Theorem 3.5.
∑

g∈SO+(2n,q)

λ(tr g)

= 2qn2−n(qn − 1)
n−1∏

j=1

(q2j − 1)

×
∑

(µ,ν)∈P(2)
n,e

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

.
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3.4. SO−(2n, q)

Let J− be the 2n×2n matrix with [ 0 1
1 0 ] along the first n−1 diagonal blocks,[

1 0
0 −ε

]
for the last diagonal block and zeros elsewhere, where ε is a fixed element

in F×q − F×
2

q . Let

G = SO−(2n,Fq) = {g ∈ GL(2n,Fq) | tgJ−g = J−, det g = 1 }.
Then GFrq = SO−(2n, q), where Frq is the standard Frobenius map on G.
G is a form of SO+

2n over Fq. In other words, G = SO−2n is defined over Fq,
and is isomorphic to SO+

2n over Fq. Indeed, an isomorphism φ : SO+
2n → SO−2n

defined over Fq2 is given by φ(g) = AgA−1, where A is the block diagonal
matrix with 1’s along the diagonal and the last diagonal block is

2−
1
2

[
1 1
ε−

1
2 −ε− 1

2

]
.

Hence G = SO−2n can be identified with SO+
2n equipped with the Frobenius map

F = φ−1 ◦ Frq ◦ φ. In particular,

(25) |SO+F
2n | = |SO−(2n, q)| = qn2−n(qn + 1)

n−1∏

j=1

(q2j − 1).

We note here that F is the twisted Frobenius map given by

F (g) = A−1Frq(AgA−1)A = B Frq(g)B−1,

where B = A−1Frq(A) is the block diagonal matrix with 1’s along the diagonal
except ± [ 0 1

1 0 ] for the last 2× 2 diagonal block. Here the sign is plus or minus
depending on whether 2 is a square in F×q or not. So F = ψ ◦ Frq, where

(26) ψ : SO+
2n → SO+

2n is given by ψ(g) = BgB−1.

The subgroup T of diagonal matrices in SO+
2n is again F -stable, but F acts

nontrivially on the Weyl group W = N(T )/T .

Theorem 3.6.∑

g∈SO−(2n,q)

λ(tr g)

= − 2qn2−n(qn + 1)
n−1∏

j=1

(q2j − 1)

×
∑

(µ,ν)∈P(2)
n,o

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

,

where P(2)
n,o denotes the subset of P(2)

n given by

(27) P(2)
n,o = {(µ, ν) ∈ P(2)

n | l(ν) is odd}.



418 HI-JOON CHAE AND DAE SAN KIM

Proof. The action of ψ (cf. (26)) on T is given by ψ
∣∣
T

= w0 = (1, . . . , 1,−1) ∈
W ′ = (Z/2Z)n o Sn if we view W ′ as a group of automorphisms of T . Let
w ∈W . Then wF = ww0Frq on T , and hence TwF = Tww0Frq .

The Gauss sum for SO−(2n, q) is
∑

g∈SO−(2n,q)

λ(tr g) =
|SO−(2n, q)|

|W |
∑

w∈W

1
|Tww0Frq |

∑

a∈T ww0Frq

λ(tr a).

Observe now thatWw0 is the subset of odd signed permutations in (Z/2Z)no
Sn and the conjugacy classes conjW ′(ww0) of ww0 ∈Ww0 inW ′ are in bijective
correspondence with the subset P(2)

n,o in (27) of P(2)
n .

As in the case of SO+
2n, in the above summation, the sum corresponding

to each w ∈ W depends only on the conjugacy classes of ww0 ∈ Ww0 in
W ′. The result now follows from (22), (25). Here one must observe that
(22) also holds for ww0 ∈ Ww0, if conjW ′(ww0) corresponds to (µ, ν) =(
(µ1, . . . , µs), (ν1, . . . , νt)

) ∈ P(2)
n,o, with t odd. Also, one must note that

|conjW ′(ww0)| = |W ′|
2l(µ)+l(ν)zµzν

=
2|W |

2l(µ)+l(ν)zµzν
. ¤

3.5. SO(2n + 1, q)

Let

G = SO(2n+ 1,Fq) = { g ∈ GL(2n+ 1,Fq) | tgJg = J, det g = 1 }.
Here J denotes the (2n+ 1)× (2n+ 1) matrix

J =




0 1n 0
1n 0 0
0 0 1


 .

F is the standard Frobenius map Frq on G, and GF = SO(2n+ 1, q), with

|SO(2n+ 1, q)| = |Sp(2n, q)| = qn2
n∏

j=1

(q2j − 1).

T = {diagonal matrices in G} = {diag(α1, . . . , αn, α
−1
1 , . . . , α−1

n , 1)} is an F -
stable maximal torus of G.

For the rest of this subsection, one is referred to the Section 3.1. As in the
symplectic group case, W = N(T )/T ∼= (Z/2Z)n o Sn is the Weyl group with
respect to T , and F -conjugacy classes in W coincide with conjugacy classes in
W .

If conj(w) (w ∈ W ) corresponds to (µ, ν) =
(
(µ1, . . . , µs), (ν1, . . . , νt)

) ∈
P(2)

n , then

TwF =
{

diag
(
tµ1(α1), . . . , tµs(αs), tν1(β1), . . . , tνt(βt),

tµ1(α
−1
1 ), . . . , tµs(α

−1
s ), tν1(β

−1
1 ), . . . , tνt(β

−1
t ), 1

)∣∣∣
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α1 ∈ F×qµ1 , . . . , αs ∈ F×qµs , β1 ∈ Cqν1 , . . . , βt ∈ Cqνt

}
.

So ∑

a∈T wF

λ(tr a) = λ(1)(−1)tK(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt)),

which is λ(1) times the expression in (22).
Now, from (1), (21) and the above, the next theorem follows.

Theorem 3.7.∑

g∈SO(2n+1,q)

λ(tr g) = λ(1)
∑

g∈Sp(2n,q)

λ(tr g)

= λ(1)qn2
n∏

j=1

(q2j − 1)

×
∑

(µ,ν)∈P(2)
n

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

.

Remark 3.8. The above relation was already observed in [11, (5.12)]. However,
thanks to the main formula (1), the present argument gives more ‘philosophical’
reason that this should be so.

4. Identities

On the one hand, the expressions of Gauss sums in the last section were
obtained by applying the main formula (1) to various finite classical groups.
On the other hand, alternative expressions of those sums were gotten by using
Bruhat decompositions with respect to certain maximal parabolic subgroups of
the finite classical groups (cf. [7, 8, 9, 10, 11, 12, 15]). In this section, equating
two different expressions of the Gauss sum for each finite classical group, we
will be able to produce some new identities.

For γ ∈ F×q , we have defined the Kloosterman sum for GL(t, q) in [10, (4.3)]
by

KGL(t,q)(λ; γ) =
∑

g∈GL(t,q)

λ(tr g + γ tr g−1) (t > 1),(28)

KGL(0,q)(λ; γ) = 1,

KGL(t,q)(λ) = KGL(t,q)(λ; 1).

The expressions of the Gauss sum for Sp(2n, q) in Theorem 3.1 and the sentence
following [10, (5.13)] yield the next theorem.

Theorem 4.1.
∑

(µ,ν)∈P(2)
n

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)
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= q−(n
2)

n∏

j=1

(q2j − 1)−1 ×
∑

06r6n
r even

qrn−r2/4

[
n

r

]

q

r/2∏

j=1

(q2j−1 − 1)KGL(n−r,q)(λ),

where P(2)
n , zµ are respectively as in (20), (18).

Remark 4.2. In [10, Lemma 4.2], it is shown that the Kloosterman sums for
general linear groups (28) satisfy the recursive relation

KGL(t,q)(λ; γ) = qt−1KGL(t−1,q)(λ; γ)K(λ; γ)

+ q2t−2(qt−1 − 1)KGL(t−2,q)(λ; γ) (t > 2).
(29)

Here K(λ; γ) = KGL(1,q)(λ; γ) is the usual Kloosterman sum as in (4) with
m = 1.

From this relation, for t > 1 one can show

KGL(t,q)(λ; γ) = q
1
2 (t−2)(t+1)

×
[(t+2)/2]∑

l=1

qlK(λ; γ)t+2−2l
∑

j1,...,jl−1

l−1∏
ν=1

(qjν−2ν − 1),
(30)

where the second sum is over all integers j1, . . . , jl−1 satisfying

(31) 2l − 1 6 jl−1 6 jl−2 6 · · · 6 j1 6 t+ 1,

and we agree that it is 1 for l = 1.
A ‘twisted average’ version of Theorem 4.1 is obtained from the expressions

of the Gauss sum for GSp(2n, q) in Theorem 3.2 and [10, (5.8)].

Theorem 4.3.

∑

(µ,ν)∈P(2)
n

(−1)l(ν)
∑

γ∈F×q χ
n(γ)K(λ(µ1); γ) · · ·K(λ(µs); γ)K(λ(ν1); γ) · · ·K(λ(νt); γ)

2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

= q−(n
2)

n∏

j=1

(q2j − 1)−1

×
∑

06r6n
r even

qrn−r2/4

[
n

r

]

q

r/2∏

j=1

(q2j−1 − 1)
∑

γ∈F×q
χn(γ)KGL(t,q)(λ; γ),

where P(2)
n , zµ, KGL(t,q)(λ; γ) are respectively as in (20), (18), (28).

Remark 4.4. The twisted average Kloosterman sum
∑

γ∈F×q η(γ)KGL(t,q)(λ; γ)
for GL(t, q) satisfies similar relation as in (29) (cf. [10, (5.9)]). Here η is any
multiplicative character of Fq. From that relation, one can find an explicit
expression for the sum (cf. (30)).
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∑

γ∈F×q
η(γ)KGL(t,q)(λ; γ)

= q
1
2 (t−2)(t+1)

[(t+2)/2]∑

l=1

ql
∑

γ

η(γ)K(λ; γ)t+2−2l
∑

j1,...,jl−1

l−1∏
ν=1

(qjν−2ν − 1),

where γ in the second sum is over F×q , the third sum runs over the same set of
integers as in (31), and we understand that it is 1 for l = 1.

In the remark following [15, Theorem 4.3], it is shown that
∑

g∈SO+(2n,q)

λ(tr g) = q−n
∑

g∈Sp(2n,q)

λ(tr g)(32)

= q(
n
2)

∑

06r6n
r even

qrn−r2/4

[
n

r

]

q

r/2∏

j=1

(q2j−1 − 1)KGL(n−r,q)(λ).(33)

So we get the following identities, in view of (32), from Theorems 3.1, 3.5, and
4.1.

Theorem 4.5.
∑

(µ,ν)∈P(2)
n,e

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

=
1
2
(qn + 1)

∑

(µ,ν)∈P(2)
n

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

=
1
2
(qn + 1)q−(n

2)
n∏

j=1

(q2j − 1)−1
∑

06r6n
r even

qrn−r2/4

[
n

r

]

q

r/2∏

j=1

(q2j−1 − 1)KGL(n−r,q)(λ),

where P(2)
n , P(2)

n,e, zµ, KGL(t,q)(λ) are respectively as in (20), (24), (18), (28).

Put Σ,Σeven and Σodd to be the summation of the following terms over (µ, ν)
in P(2)

n ,P(2)
n,e and P(2)

n,o, respectively.

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

(cf. (27) for P(2)
n,o).

As P(2)
n = P(2)

n,e ∪ P(2)
n,o is a disjoint union,

∑
=

∑
even +

∑
odd by definition.

As we saw in Theorem 4.5,
∑
even

=
1
2
(qn + 1)

∑
.
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Hence, we obtain
∑

odd

=
1
2
(1− qn)

∑
.

These results are summarized in the following corollary (cf. Theorem 4.1).

Corollary 4.6. (a)

∑

(µ,ν)∈P(2)
n,o

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

=
1
2
(qn − 1)

∑

(µ,ν)∈P(2)
n

(−1)l(ν)K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

=
1
2
(qn − 1)q−(n

2)
n∏

j=1

(q2j − 1)−1
∑

06r6n
r even

qrn−r2/4

[
n

r

]

q

r/2∏

j=1

(q2j−1 − 1)KGL(n−r,q)(λ).

(b)

(qn + 1)−1
∑

(µ,ν)∈P(2)
n,e

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

= (qn − 1)−1
∑

(µ,ν)∈P(2)
n,o

K(λ(µ1)) · · ·K(λ(µs))K(λ(ν1)) · · ·K(λ(νt))
2l(µ)+l(ν)zµzν(qµ1 − 1) · · · (qµs − 1)(qν1 + 1) · · · (qνt + 1)

.

Remark 4.7. It would be interesting if one could obtain the above identities
purely in combinatorial manner.

From Theorems 3.5, 3.6 and the last corollary we get the following somewhat
suprising identities:

∑

g∈SO−(2n,q)

λ(tr g) = 2qn2−n(qn + 1)
n−1∏

j=1

(q2j − 1)
∑

odd

(34)

= − 2qn2−n(qn − 1)
n−1∏

j=1

(q2j − 1)
∑
even

= −
∑

g∈SO+(2n,q)

λ(tr g).

Now, we have enough information to have complete relations between Gauss
sums for various special orthogonal groups and symplectic group. (cf. Theo-
rem 3.7, (32), (34))

Theorem 4.8. (a)
∑

g∈SO(2n+1,q)

λ(tr g) = λ(1)
∑

g∈Sp(2n,q)

λ(tr g),
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(b)
∑

g∈SO+(2n,q)

λ(tr g) = q−n
∑

g∈Sp(2n,q)

λ(tr g),

(c)
∑

g∈SO−(2n,q)

λ(tr g) = −q−n
∑

g∈Sp(2n,q)

λ(tr g) = −
∑

g∈SO+(2n,q)

λ(tr g).

On the one hand,
∑

g∈SO−(2n,q) λ(tr g) equals the negative of the expression
in (33). On the other hand, it equals the expression in [8, (5.10)] (cf. [8, (4.13)],
[13, (3.1)]). Thus the following identity holds, which also can be proved directly
for example using induction on r.

Proposition 4.9.

K(λ)
∑

06r6n−1
r even

qnr−r2/4

[
n− 1
r

]

q

r/2∏

j=1

(q2j−1 − 1)KGL(n−1−r,q)(λ)

+ (q + 1)
∑

06r6n−1
r odd

qnr−(r+1)2/4

[
n− 1
r

]

q

(r+1)/2∏

j=1

(q2j−1 − 1)KGL(n−1−r,q)(λ)

= q1−n
∑

06r6n
r even

[
n

r

]

q

qnr−r2/4

r/2∏

j=1

(q2j−1 − 1)KGL(n−r,q)(λ).
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