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THE GENERALIZED INVERSES A
(1,2)
T,S

OF THE ADJOINTABLE OPERATORS
ON THE HILBERT C∗-MODULES

Qingxiang Xu and Xiaobo Zhang

Abstract. In this paper, we introduce and study the generalized inverse

A
(1,2)
T,S with the prescribed range T and null space S of an adjointable op-

erator A from one Hilbert C∗-module to another, and get some analogous
results known for finite matrices over the complex field or associated rings,
and the Hilbert space operators.

1. Introduction

The generalized inverse A
(2)
T,S with the prescribed range T and null space S for

a matrix A over the complex field [6] or an associated ring [9], a bounded linear
operator A from one Hilbert space to another [10], as well as an element A of
a C∗-algebra [2] have been studied by many mathematicians. Since the matrix
algebras, the Hilbert spaces and C∗-algebras can all be considered as certain
Hilbert C∗-modules, it is meaningful to put forward the general theory of the
A

(2)
T,S inverse in the setting of the Hilbert C∗-module operators. As a Hilbert C∗-

module takes its values in a C∗-algebra which may not be equal to the complex
field, a bounded linear operator from one Hilbert C∗-module to another may
fail to be adjointable, which leads to some new phenomena. For instance, in the
Hilbert space case, condition (4) (resp. (12)) is enough to ensure the existence of
A

(2)
T,S (resp. A(1,2)

T,S ), whereas in the Hilbert C∗-module case, additional condition

(5) (resp. (13)) should be added. Likewise, a representation for the A
(2)
T,S inverse

was given in [1, Theorem 4.2] for a bounded linear operator A from one Banach
space to another, the analogous result only holds for the A

(1,2)
T,S inverse of an

adjointable Hilbert C∗-module operator A (see Theorem 2.6 below).

Received May 29, 2008.
2000 Mathematics Subject Classification. Primary 15A09, 46L08.
Key words and phrases. generalized inverse, Hilbert C∗-module, adjointable operator.
Partially supported by Shanghai Special Foundation for Youth Teachers (RE660), Innova-

tion Program of Shanghai Municipal Education Commission (09YZ147), Leading Academic
Discipline Project of Shanghai Normal University (DZL803) and Shanghai Normal University
Fund (DYL200901).

c©2010 The Korean Mathematical Society

363



364 QINGXIANG XU AND XIAOBO ZHANG

The purpose of this paper is, in the general setting of the adjointable Hilbert
C∗-module operators, to give a detailed description of the generalized inverse
A

(1,2)
T,S . We use [5] and [4] for the general references of C∗-algebras and the

Hilbert C∗-modules respectively, and [8] for the theory of the Moore-Penrose
inverses of the adjointable operators between Hilbert C∗-modules. Throughout
this paper, A is a C∗-algebra, H and K are two Hilbert A-modules. Let L(H,K)
be the set of the adjointable operators from H to K. For any A ∈ L(H, K),
the range and the null space of A are denoted by R(A) and N (A) respectively.

A closed submodule F of H is said to be topologically complemented if there
exists a closed submodule G of H such that H = F+G and F∩G = {0} (written
briefly, H = F ⊕G). Furthermore, F is said to be orthogonally complemented
if H = F ⊕ F⊥, where F⊥ =

{
x ∈ H

∣∣〈x, y
〉

= 0,∀ y ∈ F
}
.

By definition, if F is orthogonally complemented, then F is topologically
complemented; but the reverse is not true (see [4] for a counterexample). How-
ever, an exception is that every null space of an element of L(H, K) with closed
range is orthogonally complemented:

Lemma 1.1 (cf. [4, Theorem 3.2]). Let A ∈ L(H,K) have closed range. Then
A∗ also has closed range, and the following orthogonal decompositions hold:

(1) H = N (A)⊕R(A∗), K = R(A)⊕N (A∗).

Remark 1.2. For any A ∈ L(H, K), by [8, Remark 1.1] we know that the
closeness of any one of the following sets implies the closeness of the remaining
three sets:

R(A), R(A∗), R(AA∗), R(A∗A).

In this case, R(A) = R(AA∗) and R(A∗) = R(A∗A).

Definition. Let F and G be two closed submodules of H such that H = F⊕G.
For any x ∈ H, x can be expressed uniquely as x = x1 + x2 with x1 ∈ F and
x2 ∈ G. Let PF,G : H → F be defined by

(2) PF,G(x) = x1 for such x.

Then the operator PF,G defined as above is idempotent, which is bounded by
the closed graph theorem. However, the reader should be aware that PF,G may
fail to be adjointable; in other words, PF,G may not be belong to L(H, H).

2. The generalized inverses A
(2)
T,S and A

(1,2)
T,S

Throughout this section, T and S are submodules of H and K respectively,
and A is an element of L(H, K). In this section, we will study the generalized
inverses A

(2)
T,S and A

(1,2)
T,S respectively, and get some analogous results known

for finite-matrices over the complex field [7] or associative rings [9], and the
Hilbert space operators [10]. To simplify the notation, we use L(H) instead of
L(H, H). The identity operator on H is denoted by IH .
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Theorem 2.1. Let H and K be two Hilbert A-modules, and A ∈ L(H, K). Let
T and S be submodules of H and K respectively. The following conditions are
equivalent:

(i) There exists X ∈ L(K,H) such that

(3) XAX = X, R(X) = T and N (X) = S.

(ii) S, T, AT, A∗S⊥ are all closed with

K = AT ⊕ S, N (A) ∩ T = {0},(4)

H = A∗S⊥ ⊕ T⊥, N (A∗) ∩ S⊥ = {0}.(5)

In which case, X ∈ L(K,H) is unique which satisfies (3).

Proof. (i) =⇒ (ii): Suppose that there exists X ∈ L(K,H) such that (3) holds.
Then XA and AX both are idempotents so that T = R(X) = R(XA) and
AT = AR(X) = R(AX) are closed, and S = N (X) is also closed since X is
bounded. As AX is idempotent, we have

K = R(AX)⊕N (AX) = AT ⊕N (X) = AT ⊕ S.

Note that if x = Xu ∈ T for some u ∈ K such that Ax = 0, then x = Xu =
XAXu = XAx = 0, so that N (A) ∩ T = {0}, and hence(4) holds. If we take
∗-operation on both sides of XAX = X and apply Lemma 1.1, we get

(6) X∗A∗X∗ = X∗, R(X∗) = N (X)⊥ = S⊥, N (X∗) = R(X)⊥ = T⊥.

So if we replace A,X, T, S with A∗, X∗, S⊥ and T⊥ respectively, we conclude
that A∗S⊥ is closed and (5) also holds.

(ii) =⇒ (i): Suppose that S, T, AT, A∗S⊥ are all closed such that (4) and
(5) are satisfied. Since T ∩ N (A) = {0}, the restriction of A to T , A|T is a
bijection from T onto AT . Let X : K → H be a linear operator which equals
the inverse of A|T on AT , and is identically zero on S, so that

(7) X(Au + v) = u for any u ∈ T and v ∈ S.

Similarly, there exists a linear operator X∗ : H → K such that

(8) X∗(A∗ξ + η) = ξ for any ξ ∈ S⊥ and η ∈ T⊥.

For u, v in (7) and ξ, η in (8), we have
〈
X(Au + v), A∗ξ + η

〉
=

〈
u, A∗ξ + η

〉
=

〈
u,A∗ξ

〉
=

〈
Au, ξ

〉

=
〈
Au + v, ξ

〉
=

〈
Au + v, X∗(A∗ξ + η)

〉
,

which means that X∗ is the adjoint operator of X, so that X ∈ L(K,H). In
view of (7) we have R(X) = T and N (X) = S. Furthermore,

XAX(Au + v) = XAu = X(Au + v)

so that XAX = X, and hence (3) holds.
The proof of the uniqueness of X is similar to that of [9, Theorem 1] and

[10, Theorem 2.1]. ¤
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Definition. The element X ∈ L(K, H) which satisfies (3) is denoted by A
(2)
T,S .

If in addition, AXA = A, then X is denoted by A
(1,2)
T,S .

Remark 2.2. By the proof of Theorem 2.1 (see (7) and (8)) we know that

A
(2)
T,S = (A|T )−1 ◦ PAT,S ,(9)

(
A

(2)
T,S

)∗ = (A∗|S⊥)−1 ◦ PA∗S⊥,T⊥ = (A∗)(2)
S⊥,T⊥ ,(10)

and A
(2)
T,S is bounded as (A|T )−1 and PAT,S both are bounded. So if H and

K are two Hilbert spaces, then conditions (4) and (5) can be reduced to (4);
in other words, in the Hilbert space case, conditions (3), (4) and (5) in Theo-
rem 2.1 are all equivalent [10, Theorem 2.1].

For the A
(1,2)
T,S inverse, we have the following result:

Theorem 2.3. Let H and K be two Hilbert A-modules, and A ∈ L(H, K). Let
T and S be submodules of H and K respectively. The following conditions are
equivalent:

(i) There exists X ∈ L(K,H) such that

(11) AXA = A, XAX = X,R(X) = T and N (X) = S.

(ii) S, T, AT, A∗S⊥ are all closed with

K = AT ⊕ S and H = N (A)⊕ T,(12)

H = A∗S⊥ ⊕ T⊥ and K = N (A∗)⊕ S⊥.(13)

In which case, X ∈ L(K,H) is unique which satisfies (11).

Proof. (i) =⇒ (ii): Suppose that (11) holds. Then by Theorem 2.1 we get
(4). Furthermore, since XA is idempotent, we have H = R(XA)⊕N (XA) =
R(X) ⊕ N (A) = T ⊕ N (A), so (12) holds. Replacing A and X with A∗ and
X∗ respectively, we get (13).

(ii) =⇒ (i): Suppose that (12) and (13) hold. Then by Theorem 2.1 there
exists X ∈ L(K,H) which satisfies (3). By assumption, H = T ⊕ N (A), so
for any x ∈ H, x can be expressed uniquely as x = x1 + x2 with x1 ∈ T and
x2 ∈ N (A), hence

AXAx = AXA(x1 + x2) = AXAx1 = Ax1 = A(x1 + x2) = Ax,

so AXA = A and therefore (11) holds.
The uniqueness of X follows from Theorem 2.1. ¤

Remark 2.4. In the Hilbert space case, conditions (12) and (13) can be reduced
to (12).

We can clarify A
(1,2)
T,S in terms of idempotents, and part of a technique result

of [8, Theorem 2.1] can be restated as follows:
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Theorem 2.5. Let H and K be two Hilbert A-modules, T and S be closed
submodules of H and K respectively, and A ∈ L(H,K). Then the following
conditions are equivalent:

(i) A
(1,2)
T,S exists;

(ii) There exist idempotents P ∈ L(K) and Q ∈ L(H) such that

(14) R(P ) = R(A),N (P ) = S,N (Q) = N (A) and R(Q) = T.

Proof. (i) =⇒ (ii): Suppose that A
(1,2)
T,S exists, so (12) and (13) hold. Let

P = PAT,S and Q = PT,N (A). Then clearly (14) holds, and P ∗ = PS⊥,N (A∗),
Q∗ = PA∗S⊥,T⊥ so that P ∈ L(K) and Q ∈ L(H).

(ii) =⇒ (i): Suppose P ∈ L(K) and Q ∈ L(H) are idempotents such that
(14) holds. Then

H = N (Q)⊕R(Q) = N (A)⊕ T, so AT = R(A) = R(P ) is closed,

K = R(P )⊕N (P ) = R(A)⊕ S = AT ⊕ S,

K = N (P ∗)⊕R(P ∗) = R(P )⊥ ⊕N (P )⊥

= R(A)⊥ ⊕ S⊥ = N (A∗)⊕ S⊥,

H = R(Q∗)⊕N (Q∗) = N (Q)⊥ ⊕R(Q)⊥

= N (A)⊥ ⊕ T⊥ = R(A∗)⊕ T⊥ = A∗S⊥ ⊕ T⊥.

The existence of A
(1,2)
T,S then follows from Theorem 2.3. ¤

Definition. An element X of L(K,H) is said to be a {1}-inverse of A ∈
L(H, K), written X = A(1), if AXA = A. If in addition XAX = X and
AX = XA, then X is called the group inverse of A. In this case, we write X
as Ag. In view of [8, Theorem 2.2], A has a {1}-inverse if and only if R(A) is
closed.

In the special case that T = R(G) and S = N (G) for some G ∈ L(K, H),
we can clarify A

(1,2)
T,S in terms of group inverses as follows:

Theorem 2.6. Let H and K be two Hilbert A-modules, T and S be closed
submodules of H and K respectively such that T = R(G) and S = N (G) for
some G ∈ L(K, H). Let A ∈ L(H, K) and suppose that A

(1,2)
T,S exists. Then

(15) G(AG)g = A
(1,2)
T,S = (GA)gG.

Proof. (1) By Theorem 2.3 we know that (12) and (13) hold. Since K = S⊕AT ,
R(G) = T and N (G) = S, we know that the restriction of G to AT , G

∣∣
AT

:
AT → T is a bijection. Let

(16) WK =
(
G

∣∣
AT

)−1 ◦ (A|T )−1 ◦ PAT,S .

Similarly, define

(17) W ∗
K = (A∗|S⊥)−1 ◦ (

G∗
∣∣
A∗S⊥

)−1 ◦ PS⊥,N (A∗).
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Since K = N (G) ⊕ AT , we have T = R(G) = R(GAT ). Similarly, by H =
T⊥ ⊕A∗S⊥ = N (G∗)⊕A∗S⊥ we get S⊥ = R(G∗) = R(G∗A∗S⊥).

For any x ∈ T, y ∈ S, u ∈ S⊥ and v ∈ N (A∗), let

x = GAl and u = G∗A∗t for some l ∈ T and t ∈ S⊥.

Then
〈
WK(Ax + y), u + v

〉
=

〈
WKAGAl, u + v

〉
=

〈
Al, u + v

〉
=

〈
Al, u

〉

=
〈
Al, G∗A∗t

〉
=

〈
GAl,A∗t

〉
=

〈
x,A∗t

〉
=

〈
Ax, t

〉

=
〈
Ax,W ∗

KG∗A∗t
〉

=
〈
Ax, W ∗

Ku
〉

=
〈
Ax + y,W ∗

K(u + v)
〉
,

which means that W ∗
K is the adjoint operator of WK so that WK ∈ L(K).

Since S = N (G) and K = S ⊕ AT , in view of (9) and (16) we have Wk =
(AG)g and GWK = A

(1,2)
T,S .

(2) Similarly, let

(18) WH = (A|T )−1 ◦ (
G

∣∣
AT

)−1 ◦ PT,N (A).

Then WH ∈ L(H) with

(19) W ∗
H =

(
G∗

∣∣
A∗S⊥

)−1 ◦ (A∗|S⊥)−1 ◦ PA∗S⊥,T⊥ .

Furthermore, we have WH = (GA)g and WHG = A
(1,2)
T,S . ¤

Next we clarify A
(1,2)
T,S inverse in terms of {1}-inverses. We need an auxiliary

result as follows:

Lemma 2.7. Let B be a unital algebra and p be an idempotent of B. For any
x ∈ B, the following two conditions are equivalent:

(i) There exists y ∈ B, such that pxp · pyp = p = pyp · pxp;
(ii) pxp + (IB − p) is invertible in B.

Theorem 2.8 (cf. [9, Theorem 7]). Let H and K be two Hilbert A-modules,
A ∈ L(H,K) and G ∈ L(K, H) have closed ranges. Let A(1) be any {1}-inverse
of A. Then the following conditions are equivalent:

(i) U = AGAA(1) + IK −AA(1) is invertible, and N (A) ∩R(G) = {0};
(ii) V = A(1)AGA + IH −A(1)A is invertible, and N (A) ∩R(G) = {0};
(iii) A

(1,2)
R(G),N (G) exists.

In which case, for any {1}-inverses (GAG)(1), (GA)(1) and (AG)(1) we have

A
(1,2)
R(G),N (G) = GU−2AG = GU−1AV −1G = GAV −2G(20)

= G(GAG)(1)G = G(AG)(1)A(GA)(1)G.
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Proof. (1) (i) ⇐⇒ (ii): Suppose that U is invertible. Then there exists X ∈
L(K) such that

AGAA(1) ·AA(1)XAA(1) = AA(1),

AA(1)XAA(1) ·AGAA(1) = AA(1).

Multiplying A(1) and A from the left and the right respectively, we get

A(1)AGA ·A(1)A
(
A(1)XA

)
A(1)A = A(1)A,

A(1)A
(
A(1)XA

)
A(1)A ·A(1)AGA = A(1)A,

which means that V is invertible by Lemma 2.7. The proof of (ii) =⇒ (i) is
similar.

(iii) =⇒ (i): Suppose that A
(1,2)
R(G),N (G) exists. Let T = R(G) and S = N (G).

Then by (4) we have N (A) ∩ T = {0}. Let WK be defined by (16) with
R(WK) = AT . Since H = T ⊕N (A), we have R(AA(1)) = R(A) = AT , so

AA(1)WK = WK , AGWKAA(1) = AA(1) = WKAGAA(1).

It follows that

AGAA(1) ·AA(1)WKAA(1) = AGWKAA(1) = AA(1),

AA(1)WKAA(1) ·AGAA(1) = WKAGAA(1) = AA(1),

so U is invertible by Lemma 2.7.
(ii) =⇒ (iii): Suppose that V is invertible with

(21) V −1 = A(1)AXA(1)A + IH −A(1)A

for some X ∈ L(H). Then

A(1)AGA ·A(1)AXA(1)A = A(1)A,(22)

A(1)AXA(1)A ·A(1)AGA = A(1)A,(23)

V −2 = A(1)AXA(1)AXA(1)A + IH −A(1)A,(24)

AV −2 = A ·A(1)AXA(1)AXA(1)A.(25)

Multiplying A from the left on both sides of (21)–(23), we get

AV −1 = AXA(1)A,(26)

A
(
GAXA(1)

)
A = A = A

(
XA(1)AG

)
A.(27)

By the definition of V , we get

(28) AV = AGA, so AGAV −1 = A.

Let

(29) Z = GAV −2G ∈ L(K, H).

Then by (27)–(29), we have

AZA = (AGA)V −2GA = AV −1GA = A(XA(1)AG)A = A,
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and

ZAZ = GAV −2G(AGA)V −2G = GAV −2GAV −1G

= GA ·A(1)AXA(1)AXA(1)A ·GAV −1G

= GA ·A(1)AXA(1)AXA(1) ·AG

= G
(
A ·A(1)AXA(1)AXA(1)A

)
G = G(AV −2)G = Z.

For any x ∈ K, by (27) we have
(
GAXA(1)AG−G

)
(x) ∈ N (A) ∩ R(G) =

{0}, which implies that
GAXA(1)AG = G.

It follows from (28) and (26) that

GAZ = G(AGA)V −2G = G(AV −1)G = GAXA(1)AG = G,(30)

and by (27) we have

ZAG = GAV −2GAG = GA ·A(1)AXA(1)A
(
XA(1)AG

)
AG(31)

= GAXA(1)AG = G.

By (29), (30) and (31) we conclude that R(Z) = R(G) and N (Z) = N (G), so
Z = A

(1,2)
R(G),N (G). This completes the proof of the equivalence of conditions (i),

(ii), and (iii).
(2) Suppose that A

(1,2)
R(G),N (G) exists. Then by the proof of (ii) =⇒ (iii)

we have A
(1,2)
R(G),N (G) = GAV −2G. By the definitions of U and V , we have

AV = AGA = UA, so U−1A = AV −1, and hence U−2A = U−1AV −1 = AV −2,
therefore (20) holds.

By Theorem 2.3 we have H = N (A)⊕R(G) and K = N (G)⊕AR(G), so

R(G) = GAR(G) = R(GAG),R(AG) = AR(G) = R(A),
R(GA) = GR(A) = GAR(G) = R(GAG) = R(G),

which means that R(AG),R(GA) and R(GAG) are all closed. Let (GAG)(1),
(GA)(1) and (AG)(1) be any {1}-inverses of GAG,GA and AG respectively.
Then

AG = U−1(UA)G = (U−1A)(GAG) = (U−1A)(GAG)(GAG)(1)(GAG)

= (U−1AGA)G(GAG)(1)(GAG) = AG(GAG)(1)(GAG).

As N (A) ∩R(G) = {0}, we get

(32) G = G(GAG)(1)GAG.

Let WK be defined by (16). Then it is easy to show that GAGWK = G, so by
(15) and (32) we have

(33) A
(1,2)
T,S = GWK = G(GAG)(1)(GAGWK) = G(GAG)(1)G.
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Finally, choose any X ∈ L(H) which satisfies (27). Then

A = A(XA(1)A)GA = A(XA(1)A)GA(GA)(1)GA = A(GA)(1)(GA),

therefore,

GAG · (AG)(1)A(GA)(1) ·GAG = GAG(AG)(1)
(
A(GA)(1)GA

)
G

= GAG(AG)(1)AG = GAG,

which means that (AG)(1)A(GA)(1) is a {1}-inverse of GAG. By (33) we con-
clude that A

(1,2)
T,S = G(AG)(1)A(GA)(1)G. ¤

Remark 2.9. At this point, it is helpful to give an explanation of the preceding
theorem. Let H,K, A, G,A(1), U and V be as in Theorem 2.8 and suppose that
A

(1,2)
R(G),N (G) exists. Let WK be defined by (16). Then by the proof of (iii) =⇒

(i) of Theorem 2.8 we know that

U−1 = AA(1)WKAA(1) + IK −AA(1) = WKAA(1) + IK −AA(1),

so

GU−2AG = G
(
WKAA(1)WKAA(1)

)
AG = G(WKWKAG)

= GWK = A
(1,2)
R(G),N (G).

Corollary 2.10. Let H and K be two Hilbert A-modules, A ∈ L(H, K) and
G ∈ L(K, H) have closed ranges. Let A(1) be any {1}-inverse of A. Then the
following conditions are equivalent:

(i) V = A(1)AGA + IH −A(1)A is invertible, and N (A∗) ∩R(G∗) = {0};
(ii) U = AGAA(1) + IK −AA(1) is invertible, and N (A∗) ∩R(G∗) = {0};
(iii) A

(1,2)
R(G),N (G) exists.

Proof. Note that if (A∗)(1,2)
R(G∗),N (G∗) exists, then its adjoint operator equals

A
(1,2)
R(G),N (G) (see (10)). Note also that the adjoint operator of A(1) is a {1}-

inverse of A∗, so if we replace H,K, A, G,R(G), N (G) and A(1) with K, H,
A∗, G∗, R(G∗), N (G∗) and

(
A(1)

)∗ respectively, then according to Theorem
2.8 we conclude that conditions (i) through (iii) are equivalent. ¤

Remark 2.11. Let H,K be two Hilbert A-modules, and A ∈ L(H, K). As in
the Hilbert space case, it can be proved that

(1) The Moore-Penrose inverse A† exists if and only if R(A) is closed [8,
Theorem 2.2]. In which case, A† = A

(1,2)
R(A∗),N (A∗).

(2) The (finite index) Drazin inverse AD [3] exists if and only if Ind(A) =
k < ∞ and R(Ak) is closed. In which case, AD = A

(1,2)
T,S with T = R(Ak) and

S = N (Ak).
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