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YOUNG MEASURES, CARTESIAN MAPS, AND
POLYCONVEXITY

Patrick Bernard and Ugo Bessi

Abstract. We consider the variational problem consisting of minimizing
a polyconvex integrand for maps between manifolds. We offer a simple
and direct proof of the existence of a minimizing map. The proof is based
on Young measures.

1. Introduction

Let N̄ be a compact Riemannian manifold with boundary of dimension n
and M be a complete Riemannian manifold of dimension m. We denote by N
the interior of N̄ , and by dt the non-negative Borel measure on N associated
with the metric. It can be defined as the n-Hausdorff measure associated with
the Riemannian distance, and it exists also if N is not orientable. This measure
is also characterized by the fact that∫

D

dt =
∣∣∣∣
∫

D

Ω
∣∣∣∣

for each embedded disk D ⊂ M , where Ω is any of the two unitary volume
forms on D. We set p = min{m,n}. We want to discuss the classical question
of minimizing the quantity ∫

N

L(t, u(t), dut) dt

on appropriate classes of maps u : N −→ M . We recall some terminology
about Lagrangians:

Convexity: Given k ∈ {1, . . . , min(m,n)}, we say that the integrand L(t, x, v)
is k-convex if it can be written in the form

L(t, x, v) = L(t, x, v,∧2v, . . . ,∧kv) = Lt,x(v,∧2v, . . . ,∧kv)

with a Borel measurable function L such that

Lt,x : L(TtN, TxM)×L(∧2TtN,∧2TxM)×· · ·×L(∧kTtN,∧kTxM)) → R∪{+∞}
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is convex for each t and x. When k = 1, this just says that L is convex in v;
when k = p, this hypothesis is usually called polyconvexity. Let us explain the
notations. We denote by L(E,F ) the set of linear maps between E and F . The
space ∧iE is the vector space E∧E∧· · ·∧E generated by elements of the form
e1 ∧ e2 ∧ · · · ∧ ei, ej ∈ E. Given v ∈ L(E, F ), we denote by ∧iv ∈ L(∧iE,∧iF )
the linear map such that

∧iv(e1 ∧ · · · ∧ ei) = v(e1) ∧ v(e2) ∧ · · · ∧ v(ei).

If E has dimension n and F has dimension m, the dimension of ∧iE is Ci
n

(binomial coefficient) and ∧iv can be represented by a Ci
n ×Ci

m matrix whose
coefficients are the determinants of all i× i sub-matrices that can be extracted
from the matrix representing v. Let us denote by J1(N, M) the manifold of
1-jets of maps from N to M . If N is an open subset of Rn and M = Rm, then

J1(N,M) = N ×M × L(Rn,Rm).

Regularity: We say that L : J1(N,M) −→ R ∪ {+∞} is a normal integrand
if it is a Borel measurable function and if, for almost all t ∈ N , the function
(x, v) 7−→ L(t, x, v) is lower semi-continuous.

Coercivity: We say that L is k-superlinear if there exists a superlinear func-
tion l : [0,∞) −→ R such that

L(t, x, v) > l(‖v‖+ ‖ ∧2 v‖+ · · ·+ ‖ ∧k v‖)
for all (t, x, v) ∈ J1(N, M).

Our goal is to explain a compact and simple approach to this kind of prob-
lems. We do not present real novelties, and much of the techniques we will use
can be found in [14] or [12, 13]. Yet we believe it is not useless to present the
short path to Theorem 1 that follows. This work started with an attempt to
extend the methods of [7] to higher dimension.

We will define, by studying relevant sets of Young measures, sets cartk(N,M)
of maps u : N −→ M such that

W 1,n(N, M) ⊂ cartmin{n,m}(N, M) ⊂ cartk(N, M) ⊂ cart1(N,M) = W 1,1(N,M).

In the case k = min{n,m} the set that we denote cartk(N,M) is similar to the
set denoted cart1(N, M) in [12, 13], but our presentation is quite different.

In order to state appropriately a variational problem, it is useful to specify
boundary conditions. We assume that the boundary ∂N of N̄ is not empty and
we fix a map u0 ∈ cartk(N, M). We denote by cartk(N, M ; u0) the set of maps
u in cartk(N, M) such that the trace of u in L1(∂N, M) is equal to the trace of
u0. These traces are well defined (at least in the case where M is a Euclidean
space) because cartk(N, M) ⊂ W 1,1(N,M), and each element of W 1,1(N,M)
has a unique boundary trace in L1 (see for instance [11] for the definition); we
recall that the integration by parts formula holds for this trace. In the case
where M is a manifold, we shall give the precise definition of cartk(N, M ; u0)
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in Section 3. Our goal is to provide a short and direct proof of the following
result:

Theorem 1. Let k ∈ {1, . . . , min(m,n)} be given and let L : J1(N, M) −→ R∪
{+∞} be a k-convex and k-superlinear normal integrand. Let u0 ∈ cartk(N,M)
be given, such that ∫

N

L(t, u0(t),du0(t))dt < ∞.

Then there exists a map u ∈ cartk(N, M ; u0) which minimizes the integral
∫

N

L(t, u(t), du(t))dt

in cartk(N, M ; u0).

Note that, in general, we may have

inf
u∈W 1,1(N,M ;u0)

∫

N

L(t, u(t),dut)dt < min
u∈cartk(N,M ;u0)

∫

N

L(t, u(t), dut)dt

and, even if u0 is smooth,

min
u∈cartk(N,M ;u0)

∫

N

L(t, u(t),dut)dt < inf
u∈C1(N,M ;u0)

∫

N

L(t, u(t), dut)dt.

The paper [4] contains an example in which N has dimension 1 and the min-
imum on W 1,1(N,Rn) = cart1(N,Rn; u0) is smaller than the infimum on C1.
As for the other strict inequality, we are going to see an example in Section 4.2.

Theorem 1 is a slight extension on the seminal results of Ball [3]. Compared
to this work and to classical papers on polyconvexity, our proof works under
slightly weaker coercivity. Our theorem reduces to the famous Tonelli Theorem
in the case n = 1, and to the famous De Giorgi Theorem in the case m =
1. Several extensions are known, which go much beyond what we plan to
expose. First, the kind of convexity hypothesis can be relaxed to the so-called
quasi-convexity, but then one has to add more stringent growth conditions,
see [10, 14, 9]. Second, one can, in certain circumstances, relax the coercivity
condition to the case when L has only linear growth, by using cartesian currents
and functions of bounded variations. Excellent surveys of these methods are
in [12, 13, 9].

Our approach is based on Young measures, also called parametrized mea-
sures. A survey on the use of Young measure is the book [14]. Many of our
techniques are adapted from this book. In Section 2, we define the various sets
of Young measures that are useful, in particular the set of generalized maps,
on which it is appropriate to relax the variational problem. We study the
structure of generalized maps and conclude that minimizing generalized maps
correspond to minimizing maps. In Section 3, we prove a compactness results
under boundary conditions. In Section 4, we briefly expose how the various
tools exposed in Sections 2 and 3 lead to a proof of Theorem 1. We also collect
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various related remarks. Finally, we recall in the Appendix some relevant facts
on the topology of some spaces of measures.

We end this introductory section collecting some notation and material on
n-vectors and n-forms we shall need in the following.

1.1. Some algebra

Let E and F be two Euclidean vector spaces of dimension n and m. It will
be convenient to set p := min(m,n). We denote by L(E, F ) the set of linear
maps between E and F . Recall that the vector space ∧lE is endowed with a
natural inner product (which is induced from the inner product of E). This
inner product can be characterized by the property that

〈v1 ∧ · · · ∧ vl, w1 ∧ · · · ∧ wl〉 = det(G),

where G ∈ M l,l(R) is the Gram matrix Gi,j = 〈vi, wj〉 and det G is the deter-
minant of G. Note that

‖v1 ∧ · · · ∧ vl‖ := 〈v1 ∧ · · · ∧ vl, v1 ∧ · · · ∧ vl〉1/2 = 1

if (v1, . . . , vl) is orthonormal in E. Given a ∈ L(E, F ), we denote by ‖a‖ :=
sup‖x‖E61 ‖a(x)‖F its norm and by ∧la ∈ L(∧lE,∧lF ) the unique linear map
which satisfies

∧ka(v1 ∧ v2 · · · ∧ vl) = a(v1) ∧ a(v2) ∧ · · · ∧ a(vl)

for each v1, . . . , vl in E. The map ∧la is called the l-adjoint of a. In coordinates,
this map is represented by a matrix whose coefficients are the l-minors of a.

If ω is a k-form on E and U is an l-vector, l 6 k, we denote by iUω the
(k − l)-form defined by

iUω · v = ω · (U ∧ v)

for any (k − l)-vector v.

Lemma 1. Let Ω be a volume form on E, let λ be the unique n-vector on E
such that Ω · λ = 1, let U be a k-vector on E and let a ∈ L(E, F ). Then, for
any k-form χ on F , we have

(
(iUΩ) ∧ χ

) ◦ ∧n(Id⊕ a) · λ = (−1)k(n−k)χ ◦ ∧ka · U,

where Id⊕ a : E −→ E ⊕ F is the map v 7−→ (v, a(v)).

Proof. We make a proof in coordinates. Let (e1, . . . , en) be a base of E such that
λ = e1∧e2∧· · ·∧en. If e∗j is the dual base of E∗, then we have Ω = e∗1∧· · ·∧e∗n.
If I is a subset of {1, . . . , n}, we denote by eI the product eα1 ∧ · · ·∧ eαi , where
i is the cardinal of I, and αj , 1 6 j 6 i are the elements of I in increasing
order. We denote by σ(I) the sign such that eI ∧ eIc = σ(I)λ, where Ic is the
complement of I. Note that Ω = σ(I)e∗I∧e∗Ic , so that ieI Ω = σ(I)e∗Ic . Note that
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σ(Ic) = (−1)k(n−k)σ(I). It is sufficient to prove the lemma for U = σ(Jc)eJc ,
where J has cardinal n− k, in which case iUΩ = e∗J . We have

∧n(Id⊕ a) · λ =
∑

I

σ(I)eI ∧ (∧|Ic|a · eIc),

where the sum is taken on all subsets I of {1, . . . , n} and |I| is the cardinal of
I. We get (

(iUΩ) ∧ χ
) ◦ ∧n(Id⊕ a) · λ = (e∗J ∧ χ) ◦ ∧n(Id⊕ a) · λ

= σ(J)χ ◦ ∧ka · eJc = (−1)k(n−k)χ ◦ ∧ka · U. ¤

2. Generalized maps

Let us first recall the definitions of the Sobolev space W 1,q(N,M). We say
that u belongs to this space if there exists a v(t) ∈ L(TtN,Tu(t)M), depending
measurably on t, such that ∫

N

‖v(t)‖q
t,u(t)dt < ∞

and
d(χ ◦ u)t = dχu(t) ◦ v(t)

in the sense of distributions for all bounded smooth functions χ : M −→ R
with bounded derivative. This can be written intrinsically on the manifold N
by requiring that, for each smooth vectorfield U(t) on N compactly supported
in the interior of N , we have∫

N

dχu(t) ◦ v(t) · U(t)dt +
∫

N

χ(u(t)) · divU(t)dt = 0.

It is not hard to see that, if M is a Riemannian submanifold of a Euclidean
space E, then W 1,q(N, M) is just the set of the functions u ∈ W 1,q(N, E) which
satisfy u(t) ∈ M for almost every t. We recall that smooth functions are not
necessarily dense in these spaces if q < n.

2.1. Young measures

Let us denote by J1(N, M) the set of 1-jets of maps u : N −→ M . In many
examples, N is an open subset of Rn, M is Rm, and then

J1(N, M) = N × Rm × L(Rn,Rm).

We shall usually denote by (t, x, v) the points of J1(N, M). We define the
function

rk(t, x, v) = 1 + ‖v‖+ ‖ ∧2 v‖+ · · ·+ ‖ ∧k v‖
and associate to it the complete metric space Prk

(J1(N, M)) as in the appen-
dix. This is the space of Borel probability measures η on J1(N, M) such that∫

rkdη < ∞. We note that the measure on N induced by the Riemann metric,
which we have denoted by dt, is finite, since N is compact; to simplify the
following definitions, we shall suppose that the measure of N is 1.
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Let t : J1(N,M) −→ N denote the natural projection; we denote by
Yk(N,M) the set of non-negative Borel measures η ∈ Prk

(J1(N, M)) such
that t]η coincides with the measure dt. We endow Yk(N, M) with the topology
induced from Prk

(J1(N,M)).

Proposition 2. Assume that L is a normal integrand which is bounded from
below (or more generally such that L/rk is bounded from below). Then η 7−→∫

Ldη is lower semi-continuous on Yk.

Proof. Assume first that L is continuous and that L/rk is bounded. Then, the
functional is continuous by definition of the topology on Prk

.
As an intermediate step, assume that L(t, x, v) is a Caratheodory integrand

(measurable in t and continuous in (x, v)) and that L/rk is bounded. By
the Scorza-Dragoni Theorem, (see [5], Theorem I.1.1, p. 132) there exists an
increasing sequence Ki of compact subsets on N such that L is continuous on
J1(N, M)|Ki

(the set of points (t, x, v) such that t ∈ Ki) and such that ∪i(Ki)
has full measure in N . Then, there exists a sequence of continuous functions
Li such that |Li|/rk is bounded, independently of i, and such that Li = L
on J1(N,M)|Ki

. It follows that the map η 7−→ ∫
Ldη is the uniform limit on

Yk(N,M) of the continuous maps η 7−→ ∫
Lidη, and therefore it is continuous

on Yk(N, M).
In the general case, we first write the integrand L(t, x, v) = rk(t, x, v)g(t, x, v)

with a normal integrand g which is bounded from below. Then g is the increas-
ing pointwise limit of a sequence gi of bounded Caratheodory integrands, see
[5], Theorem I.1.2, p. 138. Finally, the map η 7−→ ∫

Ldη is the increasing
limit of the continuous maps η 7−→ ∫

rkgidη, and therefore it is lower semi-
continuous. ¤
2.2. Closed measures

It is a fundamental and well known observation that there exists many null-
Lagrangians, that is functions F (t, x, v) : J1(N, M) −→ R such that∫

N

F (t, u(t), dut)dt = 0

for all C1 maps u : N −→ M . We define Nk(N, M) as the sets of continuous
functions F (t, x, v) such that

• F/rk is bounded,
• ∫

N
F (t, u(t), dut)dt = 0 for each C1 map u,

• There exists a compact K ⊂ N such that F (t, x, v) = 0 if t 6∈ K,
• We have F (t, x, v) = Ft,x(v,∧2v, . . . ,∧kv) = F(t, x, v,∧2v, . . . ,∧kv),

where F is continuous and where the functions Ft,x(v, v2, . . . , vk) are
affine (We say that Ft,x is k-affine).

By extension, we shall also denote byNk(N, M) the set of functions F(t, x, v1,. . .,
vk) associated with the elements F ∈ Nk(N, M). Note that the set Nk(N,M)
may depend on the metric on M if M is not compact.
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Definition 3. A Young measure η ∈ Yk is called closed if
∫

Fdη = 0 for all
F ∈ Nk. The set Ck of closed measures is closed in Yk, and contains the Young
measures û associated with maps u ∈ W 1,n(N,M).

Let us explain how to build null-Lagrangians. Given a field of l-vectors U ,
we will denote by U̇(t) the field of (l − 1)-vectors which satisfies

d(iUΩ) = (−1)l+1iU̇Ω

for any volume form Ω on N which is compatible with the Riemannian metric
(meaning that the volume of an orthonormal base is ±1). Notice that there
are exactly two such volume forms on N if it is orientable, and that they lead
to the same U̇ . If N is not orientable, then no global volume form Ω exists,
but we can still define U̇ by using volume forms defined on orientable open
subsets of N (for example discs). If l = 1, for example, U is a vector-field, and
U̇ = divU .

Lemma 4. For each l ∈ 1, . . . , k, each smooth (l − 1)-form χ on M such that
both χ and dχ are bounded, and each compactly supported smooth field U(t) of
l-vectors on N , the function

F (t, x, v) := χx ◦ ∧l−1v · U̇(t) + dχx ◦ ∧lv · U(t)

belongs to Nk(N,M). In the case l = 1, the form χ is just a function χ(x) on
M , and the function F can be rewritten more clearly

F (t, x, v) = χ(x) divU(t) + dχx ◦ v · U(t).

Proof. Let u : N −→ Rm be a C1 function. Let us still denote by iUΩ and χ the
pull-backs of iUΩ and χ by the projections N×Rm −→ N and N×Rm −→ Rm

respectively. This allows us to define on N ×Rm the (n− 1)-form ξ = iUΩ∧χ.
We have

0 =
∫

N

(Id× u)∗dξ =
∫

N

dξ(t,u(t)) ◦ ∧n(Id× dut) · λdt

= (−1)l+1

∫

N

(iU̇Ω ∧ χ) ◦ ∧n(Id× dut) · λdt

+ (−1)n−l

∫

N

(iUΩ ∧ dχ) ◦ ∧n(Id× dut) · λdt.

Using Lemma 1 of Section 1.1, we obtain

0 = (−1)(l−1)(n−l)

∫

N

χu(t) ◦ ∧l−1dut · U̇(t)dt

+ (−1)(l+1)(n−l)

∫

N

dχu(t) ◦ ∧ldut · U(t)dt.

After simplifying the signs, we obtain∫

N

χu(t) ◦ ∧l−1dut · U̇(t)dt +
∫

N

dχu(t) ◦ ∧ldut · U(t)dt = 0.

This is the required equality. ¤
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2.3. Generalized maps and Cartesian maps

The closed measure η ∈ Ck is called a generalized map if there exists a
measurable map u : N 7−→ M such that the marginal of η on N × M is
concentrated on the graph of u. We then say that η is a generalized map over
u. We denote by Gk(N, M) the set of generalized maps.

Definition 5. We denote by cartk(N, M) the set of measurable maps u such
that there exists a generalized map over u. We call these maps cartesian maps.
We have a natural projection π from the set Gk(N,M) of generalized maps to
the set cartk(N, M) of cartesian maps.

The generalized maps have a remarkable structure:

Theorem 2. Let η be a generalized map over u. Then, there exists a mea-
surable family Γt of probability measures on L(TtN, Tu(t)M) such that η =
dt⊗ δu(t) ⊗ Γt. Setting

gi(t) :=
∫

L(TtN,Tu(t)M)

∧jv dΓt(v),

we have u ∈ W 1,1(N, M), g1(t) = dut and gi(t) = ∧ig1(t) for almost all t.

By Jensen’s inequality, we immediately obtain:

Corollary 6. If η is a generalized map over u, and if L is k-convex, then∫

J1(N,M)

Ldη >
∫

N

L(t, u(t), dut)dt.

Proof. ∫

J1(N,M)

Ldη =
∫

N

∫

L(TtN,Tu(t)M)

L(t, u(t), v)dΓt(v)dt

But we have, for each t,∫

L(TtN,Tu(t)M)

L(t, u(t), v)dΓt(v) =
∫

L(TtN,Tu(t)M)

L(t, u(t), v,∧2v, . . . ,∧kv)dΓt(v)

> L(t, u(t), du(t),∧2du(t), . . . ,∧kdu(t))

by Jensen’s inequality, because
∫
L(TtN,Tu(t)M)

∧jvdΓt(v) = ∧jdu(t) by Theo-
rem 2. ¤

The proof of Theorem 2 will occupy the end of the present section. The
functions gi(t) depend only on the map u, not on η. This is a consequence of
the following:

Lemma 7. Let u : N −→ M be a given measurable function. Then there exists
at most one family of functions g1(t), . . . , gk(t) such that∫

N

F(t, u(t), g1(t), g2(t), . . . , gk(t))dt = 0



YOUNG MEASURES, CARTESIAN MAPS, AND POLYCONVEXITY 339

for each F ∈ Nk. We call these functions the distributional minors of u if they
exist. The map u belongs to cartk(N, M) if and only if it admits distributional
minors.

Proof. The maps gl satisfy the following equations:

(E1)
∫

N

dχu(t) ◦ g1(t) · U(t)dt +
∫

N

χ(u(t)) · U̇(t)dt = 0

for all smooth vector-field U on N supported in the interior of N , and all
smooth function χ : M −→ R, and

(El)
∫

N

dχu(t) ◦ gl(t) · U(t)dt +
∫

N

χ(u(t)) ◦ gl−1(t) · U̇(t)dt = 0

for all l ∈ 2, . . . , k, all compactly supported smooth field of l-vectors U(t) on
N , and all smooth l − 1-form χ on M which is bounded as well as dχ. Now
assume that g′l(t) are other maps satisfying the same equation. Then, we have∫

N

dχu(t) ◦ (gl(t)− g′l) · U(t) = 0

for each l, each χ and each U . We claim that this implies that gl(t)− g′l(t) = 0
almost everywhere. Since we have the freedom of choosing U , we conclude
easily that dχu(t) ◦ (gl(t)− g′l(t)) = 0 for almost all t. If the claim did not hold,
we could find a compact set K ⊂ N of positive measure, such that u and gl−g′l
are continuous on K and gl − g′l does not vanish on K. Let t0 be a point of
density of K, and let χ be a compactly supported (l− 1)-form on M such that

dχu(t0) ◦ (gl(t0)− g′l(t0)) 6= 0.

Since t0 is a density point of K, and since all the involved functions are con-
tinuous on K, there exists a compact subset K ′ of K of positive measure such
that the relation dχu(t) ◦ (gl(t) − g′l(t)) 6= 0 holds for all t ∈ K ′. This is a
contradiction. ¤
Lemma 8. If u ∈ cartk(N, M), then u ∈ W 1,1(N,M) and the first distribu-
tional minor g1(t) of u(t) is the weak derivative of u.

Proof. This is a direct consequence of (E1). ¤
The following remark can be applied for example when f is an embedding

of M into some Euclidean space, and h is a chart of N :

Proposition 9. Let Ñ and M̃ be other manifolds and let f : M −→ M̃ and
h : Ñ −→ N . Assume that M̃ is endowed with a complete metric. If f is
smooth with bounded differential, h is a smooth diffeomorphism onto its image
h(Ñ) ⊂ N , and u ∈ cartk(N, M), then f ◦ u ◦ h ∈ cartk(Ñ , M̃). Moreover, the
distributional minors g̃i of f ◦ u ◦ h are:

g̃i(t̃) = ∧idfu(h(t̃)) ◦ gi(h(t)) ◦ ∧idht,

where gi are the distributional minors of u.
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Proof. Let us endow Ñ with the metric such that h is an isometry. Let F̃ (t, x, v)
be an element of Nk(Ñ , M̃). We want to prove that

(1)
∫

Ñ

F̃ (t̃, f ◦ u ◦ h(t̃), dfu(h(t̃)) ◦ duh(t̃) ◦ dht̃)dt̃ = 0.

Setting
F (t, x, v) := F̃ (h−1(t), f(x),dfx ◦ v ◦ dht)

when t ∈ h(Ñ) and F (t, x, v) = 0 when t 6∈ h(Ñ), we observe that (1) is
equivalent to

(2)
∫

N

F (t, u(t), dut)dt = 0.

This relation, on the other hand, holds if F ∈ Nk(N, M) by definition of
cartk(N, M).

We prove that F ∈ Nk(N,M). We begin to note that there is K̃ ⊂ Ñ , K̃

compact, such that F̃ (t̃, x̃, ṽ) = 0 if t̃ 6∈ K̃; thus, F (t, x, v) = 0 if t does not
belong to the compact set h(K̃). Moreover, (2) holds for all C1 maps u. This
is true because (2) is equivalent to (1), and (1) for C1 maps follows because
F̃ is a null Lagrangian, and thus it sends the C1 map f ◦ u ◦ h into zero; this
amounts to (1) by the chain rule.

In order to prove the equality between distributional minors, we expand (1)
to ∫

Ñ

F̃(t̃, f ◦ u ◦ h(t̃), . . . ,∧idfu(h(t̃)) ◦ g̃i(h(t̃)) ◦ ∧idht̃, . . .)dt̃ = 0

and use Lemma 7. ¤

Lemma 10. We have gl(t) = ∧lg1(t) for almost every t ∈ N .

Proof. If M is a Riemannian submanifold of the Euclidean space E, then every
map in cartk(N,M) belongs to cartk(N,E). Therefore, using the embedding
theorem of Nash, we can assume for this proof that M is a Euclidean space.
The set of points t0 which are simultaneously Lebesgue points of the function
u and of all the functions gl, have total measure. Let t0 be such a point. By
taking a chart in N , we can suppose that N is the ball B of radius one in Rn,
that t0 = 0, and that dt is the Lebesgue measure. Translating in Rn, we can
suppose that u(0) = 0. Let us consider, for s > 1 the maps

us(t) := su(t/s), gs
l := gl(t/s)

on N . By Proposition 9, us is a cartesian map on Ñ , the ball of radius s,
and gs

l are its distributional minors. Our hypothesis on the point t0 can be
rephrased by saying that, strongly in L1(N), we have

us(t) −→ u∞(t) = g1(0)t, gs
l (t) −→ g∞l (t) = gl(0)

when s −→∞. We can take a subsequence in order that these limits also hold
almost everywhere. Let F be a null Lagrangian on the ball of radius 1; in



YOUNG MEASURES, CARTESIAN MAPS, AND POLYCONVEXITY 341

particular, when trivially extended, it is a null Lagrangian on the ball of radius
s, so that ∫

N

F (t, us(t), dus(t))dt = 0.

Passing to the limit, we obtain∫

N

F(t, u∞(t), g∞1 (t), . . . , g∞k (t))dt = 0.

In other words, the limit function u∞ has g∞l as distributional minors. On
the other hand, since the function u∞ is smooth, we know that its distribu-
tional minors are ∧ldu∞(t), which here are just the constant functions ∧lg1(0).
Therefore, by uniqueness of the distributional minors, we have proved that
∧lg1(0) = gl(0). ¤

We have proved Theorem 2. We can reformulate it as follows: A function
u belongs to cartk(N,M) if and only if the minors ∧ldu belong to L1 and are
distributional, which means that they satisfy the equation∫

N

F(t, u(t), dut,∧2dut, . . . ,∧kdut)dt = 0.

for all F ∈ Nk. Note that cart1(N,M) = W 1,1(N,M).

2.4. Topology

The set Gk of generalized maps is endowed with the topology of Yk.

Proposition 11. The set Gk(N,M) of generalized maps is closed in Yk(N, M).

Proof. Let ηj be a sequence of generalized maps above uj . Let us assume
that the sequence ηj is converging to η in Ck(N, M). We have to prove that
there exists a map u ∈ W 1,1(N, M) such that the marginal of η on N ×M is
concentrated on the graph of u. It is enough to prove that, for each embedded
ball B ⊂ N , the marginal of η|J1(B,M) on B ×M is concentrated on the graph
of a map u. As a consequence, we can suppose that N is the open unit ball
in Rn. We consider M as a Riemannian submanifold of a Euclidean space E,
so that we see uj as elements of W 1,1(N,E) with values in M . Let mj ∈ E
be the average of uj , mj =

∫
N

uj(t)dt. Since the sequence ηj is rk-tight, see
Appendix, the derivatives duj are bounded in L1. Therefore, by the Poincaré
inequality, the sequence (uj − mj) is bounded in W 1,1. By the compactness
of the embedding W 1,1 −→ L1, this sequence is strongly compact in L1. We
assume, taking a subsequence, that it has a limit u∞, and that the convergence
holds almost everywhere. By Lusin and Egorov Theorems, for all ε > 0, there
exists a compact subset K ⊂ N such that dt(N − K) 6 ε and such that
uj is continuous on K and (uj − mj) is converging uniformly on K to u∞.
It is clear at this point that the unboundedness of mj would contradict the
tightness of ηj , and therefore we can assume that the averages mj have a limit
m∞. Setting u := u∞ + m∞, we see that uj is converging uniformly to the
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continuous function u on K. Denoting by µ the marginal of η on N ×M , we
conclude that the µ-measure of the graph of u is greater that 1− ε. Since this
holds for all ε > 0, we conclude that the measure µ is concentrated on the
graph of u. ¤

3. Boundary conditions and compactness

In most applications, the manifold M is not compact, and it is necessary
to introduce boundary conditions in order to get compactness. We fix, as
explained in the introduction, a map u0 ∈ cartk(N, M). We define the set
Ck(N,M ;u0) ⊂ Ck(N,M) of closed measures with boundary u0 as the set of
measures η ∈ Ck(N,M) such that

∫

J1(N,M)

dχx ◦ v · U(t) + χ(x) · divU(t)dη(t, x, v)

=
∫

N

dχu0(t) ◦ du0(t) · U(t) + χ(u0(t)) · divU(t)dt

for each smooth vectorfield U(t) on N̄ (not necessarily supported in a compact
set of N) and each bounded smooth function χ(x) on M with bounded de-
rivative. We can also define the set of generalized maps with boundary value
u0:

Gk(N, M ; u0) := Gk(N, M) ∩ Ck(N, M ; u0).

The space cartk(N, M ; u0) is the space of maps u such that there exists a
generalized map η ∈ Gk(N, M ; u0) above u, or in other words the maps u
whose Young measure û belongs to Gk(N, M ; u0). In [12], the functions in
cartk(N, M ; u0) are said to satisfy a weak anchorage condition. In the case
where M is a Euclidean space, the functions in cartk(N,M ;u0) are just the
functions in cartk(N, M) which have the same trace on ∂N as u0 in the W 1,1

sense.

Proposition 12. Let L be a k-convex and coercive Lagrangian. For each c > 0,
the set of measures η ∈ Ck(N, M ; u0) which satisfy

(3)
∫

J1(N,M)

L(t, x, v)dη(t, x, v) 6 c

is compact.

Proof. Let us denote by C(c) the set of measures η ∈ Ck(N,M ;u0) which satisfy
(3). Since the functional

η 7−→
∫

Ldη

is lower semi-continuous on Yk(N, M)(by Proposition 2), and since Ck(N,M ; u0),
is closed in Yk(N, M), the set C(c) is closed in Yk(N, M). So it is enough to
prove that it is relatively compact. By the appendix, this follows if we can
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prove that it is rk-tight. In other words, we have to show that for each ε > 0
there exists a compact subset Z ∈ J1(N,M) such that

∫

J1(N,M)\Z(R)

rk(t, x, v)dη(t, x, v) 6 2ε

for each measure η ∈ C(c). We shall prove that this holds for

Z(R) = {(t, x, v) ∈ J1(N, M) : d(x0, x) 6 R, ||v|| 6 R}
when R is large enough (x0 is a point in M that we have fixed once and for
all). At this point it is convenient to assume, without loss of generality, that
L > 0. We define

Z̃(R) = {(t, x, v) ∈ J1(N, M) : ||v|| 6 R}
and we see that there exists A(R) > 0 with A(R) → +∞ as R → +∞ such
that, for all η ∈ C(c),

c ≥
∫

J1(N,M)\Z̃(R)

L(t, x, v)dη(t, x, v) > A(R)
∫

J1(N,M)\Z̃(R)

rk(t, x, v)dη(t, x, v).

Taking R sufficiently large, we get from the inequality above that

(4)
∫

J1(N,M)\Z̃(R)

rk(t, x, v)dη(t, x, v) 6 ε

for each η ∈ C(c). Setting now

Ẑ(R) = {(t, x, v) ∈ J1(N, M) : d(x0, x) 6 R}
we see that the desired inequality follows if we prove that

(5) η(J1(N, M)− Ẑ(R)) 6 ε(R) ∀η ∈ C(c)
for all R, with ε(R) −→ 0 as R −→∞. Indeed, taking R0 such that (4) holds,
and then setting S = maxZ̃(R0)

rk, we get
∫

J1(N,M)\Z(R)

rkdη 6
∫

J1(N,M)\Z̃(R0)

rkdη+Sη(J1(N, M)\Ẑ(R)) 6 ε+Sε(R).

In order to prove (5), we consider, for each R > 0, a function g ∈ C1(M,R)
such that

0 6 gR(x) 6 1, g(x) = 1 if d(x0, x) > R,

g(x) = 0 if d(x0, x) 6 R/2

|dgx| 6 δ(R) ∀x,

where δ(R) −→ 0 as R −→∞; and a smooth vector-field U(t) on N̄ such that
U̇ = 1 on N or equivalently such that div U = 1 on N . The existence of such
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a vector-field is given by Lemma 13 below. We note that U is bounded, since
N̄ is compact. Since C(c) ⊂ Ck(N, M ; u0), we have, for η ∈ C(c),∫

J1(N,M)

g(x)dη(t, x, v) =
∫

N

g(u0(t)) + dgu0(t) ◦ du0(t) · U(t)dt

−
∫

J1(N,M)

dgx ◦ v · U(t)dη(t, x, v).

The last formula and the definition of g imply that there exists C > 0 such
that ∫

J1(N,M)\Z(R)

dη(t, x, v) 6 Cδ(R) +
∫

N

g(u0(t))dt

for all R and all η ∈ C(c). The term on the right converges to zero as R −→∞,
this ends the proof. ¤
Lemma 13. Let N̄ be a compact Riemannian manifold with a non-empty
boundary. There exists a smooth vector-field U(t) on N̄ such that U̇ = 1 on N
or equivalently such that div U = 1 on N .

Proof. In the case where N is a ball in Rn, this is obvious, just take U(t) = t/n.
In general, one can build U as the gradient of a function h which solves ∆h = 1
on N . ¤

4. Conclusion

We now collect the tools we have introduced to prove Theorem 1. We also
add some discussions and variations.

4.1. Proof of Theorem 1

By Propositions 11 and 12, there exists a generalized map η over some
u ∈ W 1(N, M) such that η minimizes

∫
Ldη on Gk(N, M ; u0). We want to

show that u minimizes in cartk(N,M ;u0).
If v ∈ cartk(N, M ; u0) is another map, we have∫

J1(N,M)

L(t, u(t), dut)dt 6
∫

Ldη 6
∫

Ldv̂ =
∫

J1(N,M)

L(t, v(t), dvt)dt,

where the first inequality comes from Corollary 6, and where v̂ ∈ Gk(N, M ; u0)
is the Young measure associated with v. This proves that u is minimizing in
cartk(N, M ; u0).

4.2. An example

We consider M = R2; N = B, the unit open ball of R2, and the Lagrangian

L(t, x, v) = ε(|v|p + |t|4|v|4) + |det v|2,
with p ∈]1, 2[. We claim that

inf
u∈W 1,1(N,M ;Id)

∫

N

L(t, u(t), dut)dt < min
u∈cart2(N,M ;Id)

∫

N

L(t, u(t), dut)dt
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when ε > 0 is small enough. Indeed, taking u(t) = t/|t|, and observing that
det du = 0, we get a constant C > 0 such that

inf
u∈W 1,1(N,M ;Id)

∫

N

L(t, u(t), dut)dt 6
∫

N

L(t, u(t), dut)dt 6 Cε.

On the other hand, if u ∈ cart2(B,R2; Id) is a minimizer we have∫

B

L(t, u(t), dut)dt >
∫

B

|det dut|2dt > 1
|B|

( ∫

B

|det dut|dt
)2 > π,

where the last inequality follows from the following lemma:

Lemma 14. If u ∈ cart2(B,R2; Id) minimizes
∫

B
L(t, u(t), dut)dt < ∞, then∫

B
det du(t)dt = π.

Proof. We claim that u(B) ⊂ B̄. Indeed, let f : R2 −→ R2 be a smooth diffeo-
morphism such that f = Id on B and |df | < 1 outside of B̄. By Proposition 9,
the map f◦u belongs to cart2(B,R2), and it has the same boundary condition as
u. Since |df(u)| 6 1 we have that |d(f ◦u)| 6 |du| and |det d(f ◦u)| 6 | det du|;
the first inequality is strict if |u| > 1 and du 6= 0. If we did not have u(t) ⊂ B̄
for almost every t, the action of f ◦ u would be strictly smaller than the action
of u, which would contradict the assumption that u is a minimizer.

Let us denote by A the annulus 1/2 < |t| < 1. We have

u ∈ W 1,p(B,R2) ∩W 1,4(A,R2),

so that u is continuous on A, and extends by continuity to ∂B, where it takes
the value u|∂B = Id. Finally, recall that u(B) ⊂ B̄. Define

ui(t) := i2
∫

B

τ(is)u((1− 1/i)t− s)ds,

where τ : B −→ [0, 1] is a smooth convolution kernel. It is classical that
ui −→ u in W 1,p(B,R2), and in W 1,4(A,R). As a consequence, ui|∂B converges
uniformly to the identity; since ui is smooth, this implies∫

B

det duidt −→ π.

Thus it is enough to prove that

(6)
∫

B

det duidt −→
∫

B

det dudt.

Let r ∈]1/2, 1[ and let φr ∈ C∞0 (B,R) be such that 0 6 φr 6 1 and φr = 1 on
B(0, r). Since ∫

B

det du · φrdt −→
∫

B

det dudt

as r −→ 1, the formula (6) follows if we prove

(7)
∫

B

det dui · φrdt −→
∫

B

det du · φrdt ∀r ∈]1/2, 1[
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and

(8)
∣∣∣∣
∫

B

det dui · (1− φr)dt

∣∣∣∣ < ε ∀i if r ≥ 1− δ.

Note that (8) follows from the boundedness of det dui in L2(A). In order to
prove (7), we set ui = (u1

i , u
2
i ) and u = (u1, u2), we call (x1, x2) the coordinates

on the target space R2 and we assert that∫

B

det du · φrdt =
∫

B

u1(∂2u
2,−∂1u

2) · ∇φrdt.

Indeed, this formula is just (El) with l = 2, χ = a(x1)dx2 and U = φre1 ∧ e2,
where a : R −→ [−3, 3] is a smooth function such that a(x1) = x1 on [−2, 2].
Here we use that u(B) ⊂ B̄. Similarly, by Lemma 4,∫

B

det dui · φrdt =
∫

B

u1
i (∂2u

2
i ,−∂1u

2
i ) · ∇φrdt.

As a consequence (7) is equivalent to∫

B

[u1
i (∂2u

2
i ,−∂1u

2
i )] · ∇φrdt −→

∫

B

[u1(∂2u
2,−∂1u

2)] · ∇φrdt

which holds because the integrand is converging almost everywhere and is
bounded in L2. ¤

4.3. Weak continuity of minors

Let us mention the following classical result which follows from our tools
(see [12], 3.3.1 or [10], 8.3):

Proposition 15. Let N be a bounded disc in Rn. Let ui be a sequence of maps
in cartk(N,Rm), and let u ∈ W 1,1(N, M) and gj(t) ∈ L1(N,L(∧jRn,∧jRm))
be such that ui −→ u weakly in W 1,1 and

∧2dui −→ g2, . . . ,∧kdui −→ gk

weakly in L1. Then g2 = ∧2du, . . . , gk = ∧kdu.

Proof. We consider the Young measures ûi in Gk(N,M) associated with the
functions ui. Now weak convergence implies uniform integrability, which trans-
lates to the fact that ûi is rk-tight, and therefore compact in Yk(N,Rm).
We can suppose that it has a limit η, which is a generalized map above
u. If F (t, v) = F(t, v, v2, . . . , vk) is a continuous function which is affine in
(v, v2, . . . , vk), then we have ∫

Fdûi −→
∫

Fdη

because ûi −→ η. On the other hand, since F is affine in the minors, and since
∧jdui −→ gj weakly, we have∫

F(t,dui(t),∧2dui(t), . . . ,∧kdui(t))dt −→
∫

F(t,du(t), g2(t), . . . gk(t))dt.
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We conclude that ∫
Fdη =

∫
F(t,du(t), g2(t), . . . gk(t))dt.

This implies that, for almost all t,

gj(t) =
∫
∧jvdΓt = ∧jdu(t)

by Theorem 2. ¤
4.4. On null-Lagrangians

It may seem unnatural in the definitions of the setsNk(N,M) to require that
the null-Lagrangians F (t, x, v) be k-affine functions of v. Indeed, working with
a larger set N (N, M) of null-Lagrangians would make the result stronger, and
may allow to relax somewhat the k-convexity hypothesis on L. The following
result, however, shows that there is not much hope in that direction:

Proposition 16. Let us assume that N = Rn, and that M = Rm. If F is a
null-Lagrangian such that F/rk is bounded, then Ft,x is k-affine for each t and
x.

Proof. We just give an idea of the proof. It follows from Proposition 9 that,
for λ > 0 and (t0, x0) ∈ Rn × Rm, the function

Fλ(t, x, v) := F (t0 + λt, x0 + λx, v)

is a null-Lagrangian. But then F0 is also a null-Lagrangian, which means
that Ft0,x0 is quasi-affine in the sense of [10], Section 4.1; but in the same
section of [10] it is proven that quasi-affine functions are poly-affine. In other
words, there exists an affine function F(v, v2, . . . , vp) such that Ft0,x0(v) =
F(v,∧2v, . . . ,∧pv), where p = min{m,n}. But the bound implies that F does
not depend on ∧jv for j > k. ¤
4.5. More general setting

The heart of the matters is the Jensen’s inequality obtained in Corollary 6.
This inequality is the result of an equilibrium between the known properties of
the measures Γt appearing in the disintegration of generalized maps and the
convexity assumed on the integrand L.

Other, but less explicit equilibria might be obtained as follows. Let r(t, x, v)
be a continuous function on J1(N,M) such that r(t, x, v) > 1+‖v‖. We define
the associated Kantorovich-Rubinstein space Pr(J1(N, M)), which is the set
of Borel probabilities η on J1(N,M) such that

∫
rdη < ∞. We also define the

set Yr(N,M) of those elements η of Pr(J1(N, M))) such that t]η = dt.
Now let Ĝr(N, M) be the closure, in Yr(N,M) of the set of Young measures

associated with smooth maps. We can prove as in Proposition 11 that, to each
η ∈ Ĝr(N, M) is associated a map u ∈ W 1,1(N, M) such that

(9) η = dt⊗ δu(t) ⊗ Γt



348 P. BERNARD AND U. BESSI

and such that
∫

vdΓt = du(t) for almost all t. We can define cartr(N, M) as
the set of maps which appear in this way. In this setting, we can fix boundary
conditions as before by taking u0 ∈ cartr(N, M). If the coercivity condition of
the Lagrangian is modified to

L(t, x, v) > l(r(t, x, v)),

with l super-linear, we still have compactness: Proposition 12 still holds, with
the same proof. So if L is a normal integrand satisfying the modified coercivity
condition, then there exists a Young measure η ∈ Ĝr(N, M ; u0) which minimizes
the integral

∫
Ldη in this set.

In order to prove the existence of minimizers in cartr(Ñ , M ; u0), it is enough
to adapt the convexity condition, in such a way that Corollary 6 holds for the
elements of Ĝr(N, M).

Let Pt,x be the set of Borel probability measures Γ on L(TtN,TxM) such
that

∫
rt,x(v)dΓ(v) < ∞. In short, we have

Pt,x := Prt,x
(L(TtN, TxM))

(see the Appendix below). Let B be a closed ball of volume one in TtN . Let
Pt,x be the closure, in Pt,x of the measures of the form

Γ = (du)](dt|B),

where u : TtN −→ TxM is a smooth map supported in B. Note that if Γ ∈ Pt,x,
then

∫
L(TtN,TxM)

vdΓ = 0. A last notation is necessary: we denote by τz the
translation of vector z. Then, possibly under some mild assumption on the
function r, the following result can be proved by a blow-up argument called
localisation procedure in [14]:

Structure Theorem. The measures η ∈ Ĝr(N, M) can be written in the
form (9), with

(τ−dut)] Γt ∈ Pt,x

for almost all t.

As a consequence, the convexity condition that has to be assumed in order
that Corollary 6, and then Theorem 1 hold in this more general setting is

∫

L(TtN,TxM)

Lt,x(a + v)dΓ(v) > L(t, x, a)

for all (t, x) ∈ N ×M , for all a ∈ L(TtN, TxM) and for all Γ ∈ Pt,x. This is
not an easy condition to check on examples.

Appendix. Kantorovich-Rubinstein space

Let us recall some standard facts on probability measures, see [2, 16]. Let
(X, d) be a complete and separable metric space, and let r : X −→ [1,∞) be a
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continuous function. Let Pr(X) be the set of Borel probability measures µ on
X which satisfy ∫

X

r(x)dµ(x) < ∞.

Let us denote by Cr(X) the set of continuous functions f on X such that

sup
x∈X

|f(x)|
r(x)

< ∞.

There exists a distance d on Pr(X) such that d(µn, µ) −→ 0 if and only if
∫

fdµn −→
∫

fdµ

for all f ∈ Cr(X). This distance can be chosen such that, in addition, the
metric space (Pr, d) is a complete and separable metric space.

In order to define such a distance d on Pr(X) one can define first the distance

dr(x, y) := min(d(x, y), 1) + |r(y)− r(x)|
on X, which is complete and equivalent to d. Then, we can define the distance
d on Pr(X) as the Kantorovich-Rubinstein (also called 1-Wasserstein) distance
of (X, dr).

The relatively compact subsets of (Pr(X), d) are those which are r-tight:

Definition 17. The subset Y ⊂ Pr(X) is called r-tight if one of the following
equivalent properties holds:

• For each ε > 0, there exists a compact set K ⊂ X such that
∫

X−K

r(x)dµ 6 ε

for each µ ∈ Y .
• There exists a function f : X −→ [0,∞] whose sublevels are compact

and a constant C such that
∫

X
r(x)f(x)dµ 6 C for each µ ∈ Y .

• The family Y is tight and r is Y -uniformly integrable. The first means
that, for each ε > 0, there exists a compact set K ⊂ X such that
µ(X −K) 6 ε for each µ ∈ Y . The second means that for each ε > 0,
there exists a ball B in X such that

∫
X−B

r(x)dµ 6 ε for each µ ∈ Y .

Note that 1-tightness is just tightness if r ≡ 1. If r is proper, then Y
is r-tight if and only if there exists a constant C and a superlinear function
f : [0,∞) −→ R such that ∫

X

f ◦ rdη 6 C

for all η ∈ Y .
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