
J. Korean Math. Soc. 47 (2010), No. 2, pp. 311–329
DOI 10.4134/JKMS.2010.47.2.311

CHARACTERIZATION OF THE GROUPS Dp+1(2) AND
Dp+1(3) USING ORDER COMPONENTS

Mohammad Reza Darafsheh

Abstract. In this paper we will prove that the groups Dp+1(2) and
Dp+1(3), where p is an odd prime number, are uniquely determined by
their sets of order components. A main consequence of our result is the
validity of Thompson’s conjecture for the groups Dp+1(2) and Dp+1(3).

1. Introduction

For a positive integer n, let π(n) denote the set of all prime divisors of n. If G
is a finite group, we set π(G) = π(|G|). The Gruenberg-Kegel graph of G, or the
prime graph of G, is denoted by GK(G) and is defined as follows. The vertex
set of GK(G) is the set π(G) and two distinct primes p and q are joined by an
edge if and only if G contains an element of order pq. We denote the connected
components of GK(G) by π1, π2, . . . , πs(G), where s(G) denotes the number of
connected components of GK(G). If the order of G is even, the notation is
chosen so that 2 ∈ π1. It is clear that the order of G can be expressed as the
product of the numbers m1,m2, . . . ,ms(G), where π(mi) = πi, 1 ≤ i ≤ s(G). If
the order of G is even and s(G) ≥ 2, according to our notation m2, . . . , ms(G)

are odd numbers. The positive integers m1,m2, . . . , ms(G) are called the order
components of G and OC(G) = {m1,m2, . . . , ms(G)} is called the set of order
components of G. If the finite groups G and H have the same order components
we are interested to know if G is isomorphic to H. For many simple groups
H with s(H) ≥ 2, the answer to the above question is affirmative. However if
s(H) = 1 the answer is negative. The simple groups Bn(q) and Cn(q), where
n = 2m ≥ 4 and q is odd, have the same order components but they are not
isomorphic. Hence it is natural to adopt the following definition.

Definition 1. Let G be a finite group. The number of non-isomorphic finite
groups with the same order components as G is denoted by h(G) and is called
the h-function of G. For any natural number k we say the finite group G is
k-recognizable by its set of order components if h(G) = k. If h(G) = 1 we
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say that G is characterizable by its set of order components or briefly G is a
characterizable group. In this case G is uniquely determined by the set of its
order components.

Obviously for any finite groups G we have h(G) ≥ 1. The components of the
Gruenberg-Kegel graph GK(P ) of any non-abelian finite simple group P with
GK(P ) disconnected are found in [21] and [24] from which we can deduce the
component orders of P. These information which will be used in proving our
main result are listed in Tables 1, 2, and 3.

Table 1. The order components of finite simple groups P with s(P ) = 2 (p
an odd prime)

P Restrictions on P m1 m2

An 6 < n = p, p + 1, p + 2; n!
2p p

one of n, n− 2 is not a prime
Ap−1(q) (p, q) 6= (3, 2), (3, 4) q(

p
2) ∏p−1

i=1 (qi − 1) (qp−1)
(q−1)(p,q−1)

Ap(q) (q − 1) | (p + 1) q(
p+1
2 )(qp+1 − 1)

∏p−1
i=2 (qi − 1) (qp−1)

(q−1)

2Ap−1(q) q(
p
2) ∏p−1

i=1 (qi − (−1)i) (qp+1)
(q+1)(p,q+1)

2Ap(q) (q + 1) | (p + 1), q(
p+1
2 )(qp+1 − 1) (qp+1)

(q+1)

(p, q) 6= (3, 3), (5, 2)
∏p−1

i=1 (qi − (−1)i)
2A3(2) 26 · 34 5
Bn(q) n = 2m ≥ 4, q odd qn2

(qn − 1)
∏n−1

i=1 (q2i − 1) (qn+1)
2

Bp(3) 3p2
(3p + 1)

∏p−1
i=1 (32i − 1) (3p−1)

2

Cn(q) n = 2m ≥ 2 qn2
(qn − 1)

∏n−1
i=1 (q2i − 1) (qn+1)

(2,q−1)

Cp(q) q = 2, 3 qp2
(qp + 1)

∏p−1
i=1 (q2i − 1) (qp−1)

(2,q−1)

Dp(q) p ≥ 5, q = 2, 3, 5 qp(p−1)
∏p−1

i=1 (q2i − 1) (qp−1)
(q−1)

Dp+1(q) q = 2, 3 qp(p+1)(qp + 1) (qp−1)
(2,q−1)

(qp+1 − 1)
∏p−1

i=1 (q2i − 1)
2Dn(q) n = 2m ≥ 4 qn(n−1)

∏n−1
i=1 (q2i − 1) (qn+1)

(2,q+1)
2Dn(2) n = 2m + 1 ≥ 5 2n(n−1)(2n + 1)(2n−1 − 1) 2n−1 + 1∏n−2

i=1 (22i − 1)
2Dp+1(2) 5 ≤ p 6= 2m − 1 2p(p+1)(2p + 1)(2p+1 + 1) 2p − 1∏p−1

i=1 (22i − 1)
2Dp(3) 5 ≤ p 6= 2m + 1 3p(p−1)

∏p−1
i=1 (32i − 1) (3p+1)

4
2Dn(3) 9 ≤ n = 2m + 1 6= p 1

23n(n−1)(3n + 1)(3n−1 − 1) (3n−1+1)
2∏n−2

i=1 (32i − 1)
G2(q) 2 < q ≡ ε (mod 3), ε = ±1 q6(q3 − ε)(q2 − 1)(q + ε) q2 − εq + 1
3D4(q) q12(q6 − 1)(q2 − 1) q4 − q2 + 1

(q4 + q2 + 1)
F4(q) q odd q24(q8 − 1)(q6 − 1)2(q4 − 1) q4 − q2 + 1
2F4(2)′ 211 · 33 · 52 13

Table 1. (continued)



CHARACTERIZATION OF THE GROUPS Dp+1(2) AND Dp+1(3) 313

E6(q) q36(q12 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q3 − 1)(q2 − 1) (q6+q3+1)
(3,q−1)

2E6(q) q > 2 q36(q12 − 1)(q8 − 1)(q6 − 1)(q5 + 1)(q3 + 1)(q2 − 1) (q6−q3+1)
(3,q+1)

M12 26 · 33 · 5 11
J2 27 · 33 · 52 7
Ru 214 · 33 · 53 · 7 · 13 29
He 210 · 33 · 52 · 73 17
McL 27 · 36 · 53 · 7 11
Co1 221 · 39 · 54 · 72 · 11 · 13 23
Co3 210 · 37 · 53 · 7 · 11 23
Fi22 217 · 39 · 52 · 7 · 11 13
HN 214 · 36 · 56 · 7 · 11 19

Table 2. The order components of finite simple groups P with s(P ) = 3 (p
an odd prime)

P Restrictions on P m1 m2 m3

An n > 6, n = p, p− 2 n!
2n(n−2) p p− 2

are primes
A1(q) 3 < q ≡ ε (mod 4), q − ε q (q+ε)

2
ε = ±1

A1(q) q > 2, q even q q − 1 q + 1
2A5(2) 215 · 36 · 5 7 11
2Dp(3) p = 2m + 1 ≥ 5 2 · 3p(p−1)(3p−1 − 1) (3p−1+1)

2
(3p+1)

4∏p−2
i=1 (32i − 1)

2Dp+1(2) p = 2n − 1, n ≥ 2 2p(p+1)(2p − 1)∏p−1
i=1 (22i − 1) 2p + 1 2p+1 + 1

G2(q) q ≡ 0 (mod 3) q6(q2 − 1)3 q2 − q + 1 q2 + q + 1
2G2(q) q = 32m+1 > 3 q3(q2 − 1) q −√3q + 1 q +

√
3q + 1

F4(q) q even q24(q6 − 1)2(q4 − 1)2 q4 + 1 q4 − q2 + 1
2F4(q) q = 22m+1 > 2 q12(q4 − 1)(q3 + 1) q2 −

√
2q3+ q2 +

√
2q3+

q −√2q + 1 q +
√

2q + 1
E7(2) 263 · 311 · 52 · 73 · 11 · 13· 73 127

17 · 19 · 31 · 43
E7(3) 223 · 363 · 52 · 73 · 112 · 132·

19 · 37 · 41 · 61 · 73 · 547 757 1093
M11 24 · 32 5 11
M23 27 · 32 · 5 · 7 11 23
M24 210 · 33 · 5 · 7 11 23
J3 27 · 35 · 5 17 19
HiS 29 · 32 · 53 7 11
Suz 213 · 37 · 52 · 7 11 13
Co2 218 · 36 · 53 · 7 11 23
Fi23 218 · 313 · 52 · 7 · 11 · 13 17 23
F3 215 · 310 · 53 · 72 · 13 19 31
F2 241 · 313 · 56 · 72 · 11 · 13· 31 47

17 · 19 · 23
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Table 3. The order components of finite simple groups P with s(P ) > 3
P Restrictions m1 m2 m3 m4 m5 m6

on P
A2(4) 26 3 5 7
2B2(q) q = 22m+1 > 2 q2 q − 1 q −√2q q +

√
2q

+1 +1
2E6(2) 236 · 39 · 52 · 72 · 11 13 17 19
E8(q) q ≡ 2, 3 q120(q20 − 1)(q18 − 1) q10−q5+1

q2−q+1
q10+q5+1
q2+q+1 q8 − q4

(mod 5) (q14 − 1)(q12 − 1) +1
(q10 − 1)(q8 − 1)
(q4 + 1)(q4 + q2 + 1)

M22 27 · 32 5 7 11
J1 23 · 3 · 5 7 11 19
O′N 29 · 34 · 5 · 73 11 19 31
LyS 28 · 37 · 56 · 7 · 11 31 37 67
Fi′24 221 · 316 · 52 · 73 · 11 · 13 17 23 29
F1 246 · 320 · 59 · 76 · 112 · 133· 41 59 71

17 · 19 · 23 · 29 · 31 · 47
E8(q) q ≡ 0, 1, 4 q120(q18 − 1)(q14 − 1) q10−q5+1

q2−q+1
q10+q5+1
q2+q+1 q8 − q4 q10+1

q2+1

(mod 5) (q12 − 1)2(q10 − 1)2 +1
(q8 − 1)2(q4 + q2 + 1)

J4 221 · 33 · 5 · 7 · 113 23 29 31 37 43

In [19] and [20] it is proved that if n = 2m ≥ 4, then h(Bn(q)) = h(Cn(q)) =
2 for q odd and h(Bn(q)) = h(Cn(q)) = 1 for q even. In [9] it is proved that
h(Bp(3)) = h(Cp(3)) = 2, where p is an odd prime number. The following
groups have been proved to be characterizable by their order components by
various authors: All the sporadic simple groups [2], PSL2(q), 2Dn(3), where
9 ≤ n = 2m + 1 is not a prime, 2Dp+1(2), where p is a prime number and
5 < p 6= 2m − 1, in [3], [6] and [23], respectively. Some projective special linear
(unitary) groups have been characterized in [11], [13], [14], [15] and [17]. A
few of the alternating or symmetric groups are proved to be characterizable by
their order components in [1] and [18]. The groups 2Dp(3), where p ≥ 5 is a
prime number not of the form 2m + 1, and 2Dn(2), where n = 2m + 1 ≥ 5
are characterized by the set of order components in [10] and [12], respectively.
Based on these results we put forward the following conjecture.

Conjecture 1. Let P be a non-abelian finite simple group with s(P ) ≥ 2. If G
is a finite group and OC(G) = OC(P ), then either G ∼= P or G ∼= Bn(q) or
Cn(q), where n = 2m ≥ 4 and q is an odd prime power, or G ∼= Bp(3), Cp(3),
where p is an odd prime number.

A motivation for characterizing finite groups by the set of their order com-
ponents is the following conjecture due to J. G. Thompson.

Conjecture 2 (Thompson). For a finite group G let N(G) = {n ∈ N | G has a
conjugacy class of size n}. Let Z(G) = 1 and M be a non-abelian finite simple
group satisfying N(G) = N(M). Is it true that G ∼= M?
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In [4] it is proved that if s(M) ≥ 3, then the above conjecture holds. Also
in [4] it is proved that if G and M are finite groups with s(M) ≥ 2, Z(G) = 1,
N(G) = N(M), then |G| = |M |, in particular s(M) = s(G) and OC(G) =
OC(M). Therefore if the simple group M is characterizable by the set of its
order components, then Thompson’s Conjecture holds for M.

There is another conjecture due to W. Shi and J. Bi which states:

Conjecture 3. Let G be a group and M a finite simple group. Then G ∼= M
if and only if

(a) |G| = |M | and
(b) πe(G) = πe(M), where πe(G) denotes the set of order elements of G.

Clearly conditions (a) and (b) above imply OC(G) = OC(M). Therefore if
the group G is characterizable by its order components, then we will deduce
G ∼= M and Conjecture 3 is true for M. According to the main theorem of this
paper which is stated below, Conjectures 2 and 3 are true for the simple groups
Dp+1(2) and Dp+1(3), where p is an odd number.

In this paper we consider the simple groups Dp+1(2) and Dp+1(3), and prove
that these groups are characterizable by their order components. Another name
for these group is O+

2(p+1)(q) or PΩ+
2(p+1)(q), where q = 2, 3. More precisely we

will prove:

Main Theorem. If a finite group G has the same set of order components as
Dp+1(2) or Dp+1(3), then G ∼= Dp+1(2) or Dp+1(3).

2. Preliminary results

The structure of finite groups with disconnected Gruenberg-Kegel graph
follows from Theorem A of [24] which will be stated below:

Lemma 1. Let G be a finite group with s(G) ≥ 2. Then one of the following
holds:

(1) G is either a Frobenius or 2-Frobenius group.
(2) G has a normal series 1 E H E K E G such that H is a nilpotent π1-

group, K/H is a non-abelian simple group, G/K is a π1-group, |G/K| divides
|Out(K/H)| and any odd order component of G is equal to one of the odd order
components of K/H.

To deal with the first case in the above lemma we need the following results
which are taken from [5] and [2], respectively.

Lemma 2. (a) Let G be a Frobenius group of even order with kernel and
complements K and H, respectively. Then s(G) = 2 and the prime graph
components of G are π(H) and π(K).

(b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has
a normal series 1 E H E K E G such that |K/H| = m2, |H| |G/K| = m1 and
|G/K| divides |K/H| − 1 and H is a nilpotent π1-group.
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Lemma 3. Let G be a finite group with s(G) ≥ 2. If H E G is a πi-group,
then (

∏s(G)
j=1, j 6=i mj) | (|H| − 1).

By the above lemma if H is a π1-subgroup of G, H E G, and s(G) = 2, then
m2 | |H| − 1 or |H| ≡ 1 (mod m2). The following result of Zsigmondy [25] is
important in some number theoretical considerations.

Lemma 4. Let n and a be integers greater than 1. Then there exists a prime
divisor p of an − 1 such that p does not divide ai − 1 for all 1 ≤ i < n, except
in the following cases:

(1) n = 2, a = 2k − 1, where k ≥ 2,
(2) n = 6, a = 2.

The prime p in Lemma 4 is called a Zsigmondy prime for an − 1.
Next we consider the simple groups Dn(q). Using [7] we have |Dn(q)| =
1

(4,qn−1)q
n(n−1)(qn−1)

∏n−1
i=1 (q2i−1) and for n > 3 all these groups are simple.

The outer automorphism group of Dn(q) has order (2, q − 1)2 · f · S3 for n =
4, (2, q − 1)2 · f · 2 for n > 4 even and (4, qn − 1)2 · f · 2, n odd, where
q = rf , r is a prime number. By [21] if p is an odd prime number, then
s(Dp+1(2)) = s(Dp+1(3)) = 2. Therefore in these cases the prime graphs of
Dp+1(q), q = 2, 3, have two components. The two order components by Table 1
are: m1 = qp(p+1)(qp +1)(qp+1−1)

∏p−1
i=1 (q2i−1) and m2 = qp−1

(4,qp−1) = qp−1
(2,q−1) ,

where q = 2 or 3. The prime components of the graph GK(Dp+1(q)) are
π1 = π(q(qp + 1)

∏p−1
i=1 (q2i − 1)) and π2 = π( qp−1

(2,q−1) ), where q = 2, 3.

3. Proof of Main Theorem

We assume G is a finite group with OC(G) = {m1,m2}, where m1 and
m2 are the order components of the group Dp+1(q), where p is an odd prime
number and q = 2 or 3. Therefore m2 = 2p − 1 or 3p−1

2 in the respective cases
of q = 2 or 3. We will use the Lemma 1. Therefore we start with the following
lemma.

Lemma 5. If G is a finite group with OC(G) = {m1,m2}, then G is neither
a Frobenius nor a 2-Frobenius group.

Proof. First we assume G is a Frobenius group with complement H and kernel
K and derive a contradiction. By Lemma 2 we have OC(G) = {|H| , |K|}.
Since |H| | |K| − 1 we must have |H| < |K| , hence |K| = m1 = qp(p+1)(qp +
1)(qp+1−1)

∏p−1
i=1 (q2i−1) and |H| = m2 = qp−1

(2,q−1) , where q = 2 or 3. Let r be a
Zsigmondy prime for q2(p−1)−1, which exists by Lemma 4 because p ≥ 3. Then
r | qp−1 + 1 and from the order of Dp+1(q), q = 2, 3, we observe that the order
of a Sylow r-subgroup S of G, and hence K, is a divisor of qp−1 + 1. Since K
is a nilpotent normal subgroup of G we deduce S E G and using Lemma 3 the
divisibility relation m2 | |S| − 1 must hold. Considering m2 = 3p−1

2 or 2p − 1
and |S| | qp−1 + 1 in respective cases of q = 3 or 2, a contradiction is obtained.
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Next assume that G is a 2-Frobenius group. By Lemma 2(b) there is a
normal series 1 E H E K E G for G such that H is a nilpotent π1-group,
|K/H| = m2 and |G/K| | (|K/H| − 1) = 2p − 2 or 3p−3

2 . Therefore |G/K| |
2p−1 − 1 or 3p−1 − 1. Again if r is a Zsigmondy prime for q2(p−1) − 1, then
r - qp−1 − 1, where q = 2 or 3, hence r - |G/K| and from the Lemma 2
we deduce r | |H| . Since a Sylow r-subgroup of H has order rk and H is a
nilpotent normal subgroup of G, using the Lemma 3 we deduce m2 | rk − 1.

But rk | qp−1 +1 and considering the cases q = 2 or 3 and m2 = 2p−1 or 3p−1
2 ,

respectively, a contradiction is obtained. Therefore G is not a 2-Frobenius
group and the lemma is proved. ¤

The following lemma is useful in our further investigations. We remind that
for a prime number r and a positive integer n, nr denotes the n-part of n, i.e.,
n = mnr, where (m, r) = 1.

Lemma 6. Let r be a prime divisor of a =
∏n

i=1(3
2i − 1). Then ar < 2

5
2 n if r

is odd and ar < 24n if r = 2. If r ≥ 7, then ar < 2
7
3 n.

Proof. First we assume r = 2. It is easy to verify that (32i−1)2 = 8(i)2. Hence
when i varies in the interval 1 ≤ i ≤ n, we obtain 2k | 8n · 2[ n

2 ]+[ n
4 ]+···, where

a2 = 2k, therefore a2 < 23n+ n
2 + n

4 +··· < 24n.
Next we will assume that r is odd. Let e be the least positive integer for

which r | 32e − 1, and set 32e = 1 + krl, r - k. It is clear that if r | 32i − 1,
1 ≤ i ≤ n, then e | i. Therefore if we set s = [n

e ], then for the r-part of a we
have:

ar = rls+[ s
r ]+[ s

r2 ]+··· < rls+ s
r + s

r2 +··· < rls+ s
r−1 .

The last inequality can be written as:

(∗) ar < rlsr
s

r−1 .

Since rl | 32e − 1 = (3e − 1)(3e + 1) and r is odd we deduce that rl | 3e − 1 or
rl | 3e + 1 implying that in any case rl ≤ 3e + 1. Now using (∗) we can write:

ar < rlsr
s

r−1 < (3e +1)s(3e +1)
s

r−1 = (3e +1)
rs

r−1 < (3e +1)
5
4 s < (4e)

5
4 s ≤ 2

5
2 n,

because r 6= 3. This proves ar < 2
5
2 n. If r ≥ 7, then (3e +1)

rs
r−1 ≤ (3e +1)

7
6 s <

4
7
6 se ≤ 2

7
3 n proving ar < 2

7
3 n . ¤

Now we continue the proof of the main theorem. By Lemmas 1 and 5, if
G is a finite group with OC(G) = OC(Dp+1(q)), q = 2, 3, then there is a
normal series 1 E H E K E G for G such that K/H is a non-abelian simple
group, H and G/K are π1-groups and H is nilpotent. Moreover |G/K| divides
|Out(K/H)| and the odd order component of G which was denoted by m2 is
equal to one of the odd order components of K/H and s(K/H) ≥ 2.

Since P = K/H is a non-abelian simple group with disconnected Gruenberg-
Kegel graph, by the classification of finite simple groups we have one of the
possibilities in Tables 1, 2 or 3 for P. In the following we deal with these groups.
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Note that we are characterizing two groups Dp+1(2) and Dp+1(3), where p is an
odd prime number, and the odd order components of these groups are 2p−1 and
3p−1

2 , respectively. Therefore in each of the following case by case investigation
we have subcases dealing with two different groups.

Case 1. P ∼= A2(4), 2A3(2), 2A5(2), E7(2), E7(3), 2E6(2), 2F
′
4(2) or one of

the 26 sporadic simple groups listed in Tables 1, 2 or 3.
The odd order component of Dp+1(2) or Dp+1(3) are m2 = 2p − 1 or 3p−1

2 ,
respectively. Using Tables 1-3, we obtain the following possibilities.

(a) OC(G) = OC(Dp+1(2)).
(J2, p = 3), (E7(2), p = 7), (HiS, p = 3), (F2, p = 5), (A2(4), p = 3), (M22,
p = 3), (J1, p = 3), (O′N , p = 5), (Ly, p = 5), (J4, p = 5).

If p = 3, then OC(G) = OC(D4(2)), from which we obtain |G| = 212·35·52·7.
Using the condition |P | | |G|, only J2 and A2(4) need further investigation.

By [7] we have |Out(A2(4))| = 12, |Out(J2)| = 2, hence from |G/H| |
|Aut(P )| we deduce 52 | |H| in the case of K/H ∼= A2(4). Since H is nilpotent
it is the direst product of its Sylow subgroups. Hence if Q is a Sylow 5-subgroup
of H, then Q is characteristic in K, hence Q E G. Now an element of order 7
in G acts on Q by conjugation, where |Q| = 52, and we must obtain a fixed
element which results an element of order 35 in G. But then the prime graph
of G would be connected, a contradiction.

Next we assume K/H ∼= J2. In this case similar consideration as above shows
that 32 | |H| and a Sylow 3-subgroup R of H has order 3k, where 2 ≤ k ≤ 5.
But now an element of order 7 of G acting by conjugation on R must fix a
non-trivial element of order 3 resulting an element of order 21 which makes the
prime graph of G connected. This final contradiction rules out the case p = 3.

In the case (E7(2), p = 7) it is easy to see that |E7(2)| - |D8(2)|. For p = 5,
it can be verified the orders of the groups F2, O′N , Ly and J4 don’t divide the
order of D6(2). This final contradiction rules out case (a).

(b) OC(G) = OC(Dp+1(3)).

(2F
′
4(2), p = 3), (Fi22(2), p = 3), (Suz, p = 3), (2E6(2), p = 3).
We have |G| = |D4(3)| = 213 · 312 · 52 · 7 · 13, and only the order of 2F

′
4(2)

divides the order of D4(3). Now from |G/H| | |Aut(P )| we obtain 7 | |H|,
hence a Sylow 7-subgroup of H has order 7. Therefore an element of order 13
must commute with an element of order 7 contradicting disconnectedness of
the prime graph of G. Therefore Case 1 can not happen.

Case 2. P ∼= An and either n = p′, p′ + 1, p′ + 2, one of n or n− 2 is not
prime; or n = p′, p′ − 2 are both prime, where p′ > 6 is a prime number.

By Tables 1 and 2, the odd order components of An are p′ and(or) p′ − 2.

(a) OC(G) = OC(Dp+1(2)).
If m2 = 2p − 1 = p′ − 2, then p′ = 2p + 1 is a multiple of 3 and p′ > 3,
contradicting primality of p′. Hence we assume m2 = 2p − 1 = p′. If p = 3,
then p′ = 7 and |G| = 212·35·52·7. Since |Out(A7)| = 2, from |G/H| | |Aut(A7)|
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we deduce that 5 | |H| , hence a Sylow 5-subgroup of H has order 5 or 52. But
then an element of order 7 in G must fix an element of order 5 because a Sylow
5-subgroup of H is normal in G, resulting the connectivity of the prime graph
of D4(2), a contradiction.

Therefore we assume p ≥ 5, hence p′ ≥ 31. By Lemma 1 in [22] there are at
least three distinct primes pi such that 2p−1 < pi < 2p − 1. Of course we have
pi | |Ap′ |. But considering the order of the group |Dp+1(2)| we observe that
there are at most two prime divisors of |Dp+1(2)| between 2p−1 and 2p − 1, a
contradiction.

(b) OC(G) = OC(Dp+1(3)).

If m2 = 3p−1
2 = p′ − 2, then p′ = 3p+3

2 which is not a prime number. Hence
we assume m2 = 3p−1

2 = p′. If p = 3, then p′ = 13. We have |G| = |D4(3)| =
213.312.52.7.13 and obviously |A13| does not divide |D4(3)| . Hence we may
assume p ≥ 5. The 3-part of |G| is 3p(p+1) and we must have |Ap′ |3 | 3p(p+1).

But the largest power of 3 dividing p′! is [p′

3 ] + [p′

9 ] + · · · = 3p−2p−1
4 . It can be

verified that if p ≥ 5, then 3p−2p−1
4 > p2 + p and hence |Ap′ |3 does not divide

|G|3, a contradiction.
Case 3. P ∼= Ap′−1(q), (p′, q) 6= (3, 2), (3, 4).
From now on we use Lemma 9 in [23]. According to this lemma if r is an

odd prime divisor of a =
∏n

i=1(2
2i − 1), then the r-part of a, i.e., ar, satisfies

ar < 23n and moreover if r ≥ 5, then ar < 22n.

(a) OC(G) = OC(Dp+1(2)).
In this case we have:

(∗) qp′ − 1
(q − 1)(p′, q − 1)

= 2p − 1.

From which we deduce qp′ ≥ 2p. If p = 3, then it is easy to verify that the only
solution of qp′−1

(q−1)(p′,q−1) = 7 are (p′, q) = (3, 2) and (3, 4) which are not the case
by assumption. Therefore we assume p ≥ 5. Suppose p′ ≥ 7 and let q = rf , r
prime. From |P | | |G| = |Dp+1(2)| we deduce that r | |Dp+1(2)|. The r-part of
|P | is rfp′(p′−1)/2 and we have qp′(p′−1)/2 > q2(p′+1) > 22(p+1), since p ≥ 5 by
Lemma 9 in [23] r must be even, i.e., r = 2.

Now since (p′, q − 1) ≤ q − 1 < q, from (∗) we can deduce:

2p >
qp′ − 1
(q − 1)q

= (qp′−1 + · · ·+ q + 1)/q = qp′−2 + · · ·+ 1 + q−1 > qp′−2

which implies 2p > q5, because p′ ≥ 7. Since q is a power of 2, the inequality
2p > q5 implies q5 | 2p.

Now again we rearrange (∗) as qp′ = 2p(q−1)(p′, q−1)−q(p′, q−1)+(p′, q−
1)+1 from which it follows that q5 | −q(p′, q−1)+(p′, q−1)+1 which in turn
implies that q = 2, and then (∗) implies p′ = p. Therefore |G| = |Dp+1(2)| and
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|P | = |Ap−1(2)|, hence from |G/H| | |Aut(P )| = 2 |Ap−1(2)| we obtain that a
Zsigmondy prime for 2p+1 − 1 must divide |H|. Since H is a nilpotent normal
subgroup of G its Sylow subgroups are normal in G. If p = 5, then 7 | |H|
and a Sylow 7-subgroup of H has order at most 72. Now an element of order
25−1 = 31 must fix an element of order 7, contradicting disconnectedness of the
prime graph of D6(2). Hence we will assume p > 5. Let s be a Zsigmondy prime
for 2p+1 − 1 which exists because p 6= 5. Therefore for a Sylow s-subgroup S
of G, and hence of H, by Lemma 3, we must have |S| ≡ 1 (mod m2), implying
|S| = 1 + k(2p − 1) for some k. Since |S| ≤ 2p+1 − 1 we deduce k = 1 or 2. If
k = 1, then s = 2p is not a prime, and if k = 2, then s = 2p+1 − 1, again not a
prime number. This final contradiction rules out the possibility of P ∼= Ap′(q)
for p′ ≥ 7. The special cases p′ = 2, 3, 5 may be treated similarly which end to
contradiction as well.

(b) OC(G) = OC(Dp+1(3)).

In this case we have

(∗∗) qp′ − 1
(q − 1)(p′, q − 1)

=
3p − 1

2
.

If q = 2, then from (∗∗) we obtain 2p′+1 − 3p = 1 which is impossible because
3p + 1 is not a multiple of 8. Hence we assume q ≥ 3. Now (∗∗) can be written
as qp′ = 1 + 3p−1

2 (q − 1)(p′, q − 1) from which we obtain qp′ ≥ 3p. Now if
p′ ≥ 11, then using the above inequality we can write:

qp′(p′−1)/2 > q4(p′+1) ≥ 34(p+1).

Therefore the r-part of |P | is more than 34(p+1), where q = rf . By Lemma 6
we obtain r = 3.

Now using the same method as used in (a) we can show that 3p is divisible
by q9. If we rewrite (∗∗) as 2qp′ = 3p(q−1)(p′, q−1)−q(p′, q−1)+(p′, q−1)+2,
then q9 | −q(p′, q − 1) + (p′, q − 1) + 2, from which we obtain q = 3 and the
by (∗∗) we get p′ = p. We have |G/H| | |Aut(Ap−1(3))| from which we obtain
that a Zsigmondy prime s for 3p+1− 1 must divide |H| . Since H is a nilpotent
normal subgroup of G the Sylow s-subgroup S of H is normal in G, and by
Lemma 3 we obtain |S| ≡ 1 (mod m2), implying |S| = 1 + k( 3p−1

2 ). Now from
s | 3p+1 − 1 we deduce that s | 3

p+1
2 + 1, but 1 + k( 3p−1

2 ) > 1 + 3
p+1
2 . This

contradiction proves the impossibility of the case when p′ ≥ 11.
If p′ = 7, then from q7 ≥ 3p we obtain q21 ≥ 33p > 24(p+1), hence by

Lemma 6, q must be a power of 2. Now the same method as above can be
applied to obtain a contradiction.

Assume p′ = 5. If (5, q−1) = 5, then q5 = 1+5(q−1)( 3p−1
2 ) > 1+5(3p−1) =

5 · 3p − 4 > 2
5(p+1)

4 hence q10 > 2
5
2 (p+1) and by Lemma 6 either r = 2 or

r = 3. Hence the previous method can be applied. If (5, q − 1) = 1, then
q5 = 1 + (q− 1)3p−1

2 , and if q 6= 3 we will obtain q5 > 3
2 (3p − 1) + 1 > 2

5
4 (p+1),
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hence q10 > 2
5
2 (p+1). Therefore by Lemma 6, r = 2 or 3 where q = rf . Hence

the previous method can be applied.
Finally assume p′ = 3. In this case the equation q3−1

(q−1)(p′,q−1) = 3p−1
2 has no

solution for the prime power q.
Case 4. P ∼= Ap′(q), q − 1 | p′ + 1.

In this case we have m2 = qp′−1
q−1 and either qp′−1

q−1 = 2p − 1 or qp′−1
q−1 = 3p−1

2 .
The equations in this case are the same as in the Case 3 and it is ruled out
similarly.

Case 5. P ∼= 2Ap′−1(q) or 2Ap′(q), q + 1 | p′ + 1, (p′, q) 6= (3, 3), (5, 2).

We have m2 = qp′+1
(q+1)(p′,q+1) or qp′+1

q+1 , respectively. Because of similarity we
give details related to P ∼= 2Ap′(q), where q + 1 | p′ + 1, (p′, q) 6= (3, 3), (5, 2).

(a) OC(G) = OC(Dp+1(2)).

In this case we have qp′+1
q+1 = 2p−1. If p = 3, then from this equation we deduce

p′ = 3 and q = 3 which is not the case. Therefore we assume p ≥ 5. Since
q ≥ 2, from the last equality we obtain qp′ > 2p+1. Therefore from p′ ≥ 3 we
obtain the following inequality:

qp′(p′+1)/2 ≥ q2p′ > 22(p+1).

Since p ≥ 5, by Lemma 9 in [23] r must be even, i.e., r = 2, where q = rf is

a power of the prime number r. From the equation qp′+1
q+1 = 2p − 1 we deduce

2p = qp′+q+2
q+1 ≥ q, and since q is a power of 2 we obtain q | 2p. Now we can

rewrite qp′+1
q+1 = 2p−1 as qp′ = (q+1)2p−q−2, from which we deduce q | q+2,

implying q = 2. Therefore we obtain the equation 2p′ = 3 · 2p − 4 which is a
contradiction because p and p′ are at lest 3. Hence this case is ruled out.

(b) OC(G) = OC(Dp+1(3)).
In this case we have

(∗) qp′ + 1
q + 1

=
3p − 1

2
.

If q = 2, then (∗) can be written as 3p+1 − 2p′+1 = 5, and because p + 1 and
p′+1 are even we can write 32( p+1

2 )−22( p′+1
2 ) = 5. Reducing both sides modulo

5 we obtain (−1)
p+1
2 − (−1)

p′+1
2 = 0. Therefore p + 1 = 4k and p′ + 1 = 4k′

and the original equation becomes 34k − 24k′ = 5. Now reducing both sides
modulo 16 we obtain 1 = 5, a contradiction. The same arguments prove the
equality (∗) is impossible for q = 3, 4 and 5. Therefore we will assume q ≥ 7.
Now (∗) can be rewritten as: qp′ = −1 + (q + 1)( 3p−1

2 ) ≥ −1 + 4(3p − 1) =
4 · 3p − 5 > 3p+1 hence qp′ > 3p+1. If p′ ≥ 7 we have the following inequality:
qp′(p′+1)/2 ≥ q4p′ > 34(p+1). Therefore the r-part of |P | is more than 34(p+1),
where q = rf . By Lemma 6 we obtain r = 3.
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Now from (∗) we obtain 3p = 2qp′+q+3
q+1 > q and since q is a power of 3

we obtain q | 3p. Next we rewrite (∗) as 2qp′ = (q + 1)3p − q − 3, from
which we obtain q | q + 3, hence q = 3. Therefore we end with the equation
2 ·3p′ = 4 ·3p−6 which is impossible because p and p′ are both at least 3. This
final contradiction rules out the possibility P = 2Ap′(q) for p′ ≥ 7.

If p′ = 5 or 3, then from q +1 | p′+3 we obtain q = 2, 5 for p′ = 5 and q = 3
for p′ = 3, which are not the case because we are assuming q ≥ 7. Therefore
the Case 5 is completely ruled out.

Case 6. P ∼= Bn(q), n = 2m ≥ 4, q odd; Cn(q), n = 2m ≥ 2; 2Dn(q), n =
2m ≥ 4.
In this case because of the similarity of arguments we give the details of the
case P ∼= Bn(q). In this case we have qn+1

2 = 2p − 1 or 3p−1
2 and we deal with

them separately. As usual we set q = rf , where r is a prime number.
(a) OC(G) = OC(Dp+1(2)).

We have qn+1
2 = 2p−1 which implies qn = 2p+1−3 > 2p. If p = 3, then q = 13

and n = 1 which is not the case. Hence we assume p ≥ 5. A Sylow r-subgroup
of Bn(q) has order qn2

and we can write:

qn2
> q3n > 23p ≥ 22(p+1)

which by Lemma 9 in [23] we deduce r = 2. Now it is easy to see that for
q = 2f the equation qn = 2p+1 − 3 is impossible.

(b) OC(G) = OC(Dp+1(3)).

In this case we have qn+1
2 = 3p−1

2 which implies qn = 3p− 2 > 3p−1. It is clear
that qn = 3p − 2 does not hold for p = 3. Hence we assume p ≥ 5. Similar
to case (a) we can write qn2 ≥ q4n > 34(p−1) > 3

5
2 (p+1), which by Lemma 6

implies r = 3 or 2. Now it is easy to see that the equation qn = 3p − 2 does
not hold for q = 2f and q = 3f .

Case 7. P ∼= Bp′(3).

In this case we have either 3p′−1
2 = 2p− 1 or 3p′−1

2 = 3p−1
2 . In the first case we

obtain 3p′ − 2p+1 = −1 which is impossible [8]. In the second case we obtain
p′ = p. The outer automorphism group of P has order 2 and from |G/K|
| |Out(P )| = 2 we obtain G = K or |G/K| = 2. If G = K, then H = K

which is a contradiction. If |G/K| = 2, then |G/K| · |H| = |G|
|P | implying

2 |H| = 3p(3p+1 − 1), hence |H| = 3p(3p+1−1)
2 . Let s be a Zsigmondy prime for

3p+1 − 1 (the case p = 5 is ruled out similarly), then a Sylow s-subgroup S of
H is normal in G and by Lemma 3 we have 3p−1

2 | |S| − 1. Therefore we may
write |S| − 1 = k( 3p−1

2 ) for some k ∈ N. Now from |S| ≤ 3p+1 − 1 we obtain
k ≤ 6 and examination of each k leads to a contradiction. Therefore this case
is ruled out.

Case 8. P ∼= Cp′(q), q = 2, 3; P ∼= Dp′(q), p′ ≥ 5, q = 2, 3, 5.
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In this case because of the similarity in arguments we give the details in the
case P ∼= Dp′(5), p′ ≥ 5. In this case we have 5p′−1

4 = 2p − 1 or 3p−1
2 . If

5p′−1
4 = 2p − 1, then 5p′ = 2p+2 − 3 > 2p+1 and since a Sylow 5-subgroup of

P has order 5p′(p′−1), p′ ≥ 5, we can write 5p′(p′−1) ≥ 53p′ > 23(p+1) which by
Lemma 9 in [23] is impossible.

Therefore we assume 5p′−1
4 = 3p−1

2 which implies 5p′ +1 = 2 ·3p. The prime
p′ has one of the following forms p′ = 6k+1 or p′ = 6k+5. Since 56 ≡ 1 (mod 9)
we obtain (56k+1 + 1) ≡ 6 (mod 9) and (56k+5 + 1) ≡ 3 (mod 9), hence 5p′ + 1
is not divisible by 9 in both cases, a contradiction.

Case 9. P ∼= Dp′+1(q), q = 2, 3.

In this case the odd order component of Dp′+1(2) is 2p′ − 1 and 3p′−1
2 in

the respective cases q = 2 and q = 3. Therefore 2p′ − 1 = 2p − 1 or 3p−1
2 ,

and in the second case using [8] we get a contradiction, but in the first case
we obtain p = p′. But then P ∼= Dp+1(2) and |P | = |H/K| = |G| implies
G ∼= P ∼= Dp+1(q) which is our desire case.

If 3p′−1
2 = 2p − 1 or 3p−1

2 , then only the first case is possible from which we
obtain p = p′ and similar to above G ∼= P ∼= Dp+1(3) which is desired.

Case 10. P ∼= 2Dn(2), n = 2m + 1 ≥ 5; P ∼= 2Dp′(3), 5 ≤ p′ 6= 2m + 1 or
P ∼= 2Dn(3), 9 ≤ n = 2m + 1 6= p′.
If m2 is the odd order component of any of the above groups, then considering
the equations m2 = 2p − 1 or m2 = 3p−1

2 we obtain a contradiction by number
theoretic methods.

Case 11. P ∼= G2(q), 2 < q ≡ ε (mod 3), ε = ±1.

(a) OC(G) = OC(Dp+1(2)).

In this case we have q2−εq+1 = 2p−1 which implies q2−εq = 2p−2. Obviously
q can not be any power of 2 and p = 3 is impossible. Therefore p ≥ 5. If ε = 1
then q2 = 2p + q − 2 > 2p−1 which implies q6 > 23(p−1) ≥ 22(p+1), hence by
Lemma 9 in [23] a contradiction is obtained.

If ε = −1, then q2 + q = 2p − 2, and can be verified that for p = 3 and 5 we
obtain contradictions. Therefore we assume p ≥ 7. We can write q2+q = 2p−2
as (2q+1)2 = 2p+2−9 > 2p+1 which implies 2q+1 > 2

p+1
2 , hence 2q > 2

p+1
2 −1

or q > 2
p−1
2 − 1

2 > 2
p−2
2 . Therefore q6 > 23(p−2) ≥ 22(p+1) and again by

Lemma 9 in [23] we obtain a contradiction.

(b) OC(G) = OC(Dp+1(3)).

In this case we have q2 − εq + 1 = 3p−1
2 . We will give the details only when

ε = 1. We have q2 − q = 3p−3
2 . If p = 3, then q = 4. Therefore |G/K| · |H| =

|G|
|P | = |D4(3)|

|G2(4)| = 2 · 39. But |G/K| | |Out(G2(4))| = 2, hence if |G/K| = 1 we
get G = K which implies |H| = 2 · 39. Hence by Lemma 3, m2 = 13 | 2 · 39− 1,
a contradiction. Therefore |G/K| = 2 implying |H| = 39. Now by the Brauer
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character table of G2(4) in [16] an element of order 13 in G2(4) fixes a non-
trivial element in every G2(4)-module over GF (3), hence G has an element of
order 13× 3 which violates the disconnectedness of the prime graph of G.

Hence we may assume p ≥ 5. Now from q2 = q + 3p−3
2 > 3p−1 we deduce

q6 > 33(p−1) > 2
5
2 (p+1) which holds because of p ≥ 5. Now by Lemma 6 we

obtain q = 2f . Because of q ≡ 1 (mod 3) and the fact that 9 - q2− q we obtain
q ≡ 4 or 7 (mod 9), hence |Out(G2(q))| = f is prime to 3. Let t = |G/K|. Then
t |H| = |Dp+1(3)|

|G2(q)| whose 3-part is 3p2+p−3. Since (t, 3) = 1, a Sylow 3-subgroup

of H must have order 3p2+p−3, and by Lemma 3, m2 | 3p2+p−3 − 1 from which
we can deduce p = 3, and this was already dismissed.

Case 12. P ∼= 3D4(q) or P ∼= F4(q), q odd.
In both cases we have m2 = q4 − q2 + 1. Using similar methods as in Case 11
it is possible to rule out the above possibilities.

Case 13. P ∼= E6(q) or P ∼= 2E6(q), q > 2.
The odd order component is either q6+q3+1

(3,q−1) or q6−q3+1
(3,q+1) for the above respective

cases. Using the following inequalities together with Lemma 9 in [23] and
Lemma 6 the second case is ruled out.

q6 = q3 − 1 + (3, q + 1)(2p − 1) > 2p,

q6 = q3 − 1 + (3, q + 1)
(3p − 1

2
)

> 3p−1.

For the first case we use the following inequalities:

q9 + 1 = (q3 + 1)(q6 − q3 + 1) >
q6 − q3 + 1
(3, q + 1)

+ 2 > 2p + 1,

q9 + 1 = (q3 + 1)(q6 − q3 + 1) >
2(q6 − q3 + 1)

(3, q + 1)
+ 2 > 3p + 1

to obtain q9 > 2p and q9 > 3p and then q36 > 24p > 23(p+1) or q36 > 34p >
24(p+1) which enables us to use Lemma 6 of [23] and Lemma 3 to deduce r = 2
or 3 in the respective cases. Then using the method of Case 11 one is able to
rule out this case.

Case 14. P ∼= 2Dp′+1(2), 5 ≤ p′ 6= 2m − 1.
In this case m2 = 2p′ − 1 = 2p − 1 or 3p−1

2 . In the first case p′ = p, and then
2p+1 + 1 | ∣∣2Dp+1(2)

∣∣ and a Zsigmondy argument rules out this possibility. If
2p′+1 = 3p−1

2 , then 2p′+1 − 3p = 1 which is impossible.
Next we consider simple groups with three prime graph components listed

in Table 2. We remark that the case of the alternating group is already dealt
with.

Case 15. P ∼= A1(q), 3 < q ≡ ε (mod 4), ε = ±1.
The odd order components are q and q+ε

2 .

(a) OC(G) = OC(Dp+1(2)).
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Let q = rf , where r is a prime number. 2p − 1 = q = rf is impossible by [8].
If 2p − 1 = q−1

2 , then q = 2p+1 − 1 and cannot be a prime number. Hence we
assume 2p−1 = q+1

2 which implies q = 2p+1−3, hence rf = 2p+1−3 from which
it is easy to see that r must be odd. But q +1 = 2p+1−2 and q−1 = 2p+1−4,

therefore |A1(q)|2 = 4 and from |G/K| · |H| = |G|
|P | we deduce that the 2-part of

|G|
|P | is 2p2+p−2. Since |G|

|K| | 2f and f is odd, the 2-part of |G/K| is at most 2.

Therefore a Sylow 2-subgroup of H has order either 2p2+p−2 or 2p2+p−3. Now
from Lemma 3 we must have 2p − 1 | 2p2+p−2 − 1 or 2p − 1 | 2p2+p−3 − 1, from
which only the second divisibility with p = 3 is possible. But if p = 3, then
q = 13 and this implies that 13 - |D4(2)|, which is a contradiction.

(b) OC(G) = OC(Dp+1(3)).

In this case we have to deal with each of the following possibilities: q = 3p−1
2 ,

q+ε
2 = 3p−1

2 , where ε = ±1. If t = |G/K|, then we know t |H| = |G|
|P | and

t | |Out(P )|. In the case of A1(q), q odd, we have |Out(P )| = 2f , where
q = rf is a power of the prime r. Using the above information we will deal
with appropriate cases as follows.

(i) q = 3p−1
2 .

In this case it is easy to see that q ≡ 4 (mod 9) from which it follows that 3 - f .
The 3-part of |G|

|P | is 3p2+p−1 and since (f, 3) = 1 we deduce that a Sylow 3-

subgroup of H has order 3p2+p−1. By Lemma 3 we must have 3p−1
2 | 3p2+p−1−1

from which a contradiction can be derived.
(ii) q−1

2 = 3p−1
2 .

In this case we have q = 3p. If p = 3, then q = 27 and from t |H| = |D4(3)|
|A1(27)|

we find that 52 | |H| . But then an element of order 13 has to fix an element of
order 5 upon its action by conjugation on a Sylow 5-subgroup of H. This will
violate the disconnectedness of the prime graph of D4(3). Therefore we assume
p > 3, hence |Out(P )| = 2p is prime to 3. Now from t |H| = |G|

|P | we deduce
that 32(p−1) − 1 | |H|. Now using a Zsigmondy prime argument for 32(p−1) − 1
and the fact that p > 3, one can obtain a contradiction.

(iii) q+1
2 = 3p−1

2 .
In this case we have q = 3p − 2. It is easy to see that q ≡ 7 (mod 9) and
in q = rf , f is not a multiple of 3. The 3-part of |G|

|P | is 3p2+p−1 and from

t |H| = |G|
|P | and the fact that (3, f) = 1, we deduce that a Sylow 3-subgroup of

H has order 3p2+p−1 from which a contradiction can be derived.

Case 16. P ∼= A1(q), q > 2 even.
In this case the odd order components of A1(q) are q− 1 and q + 1 and all the
possibilities are ruled out easily and only q − 1 = 2p − 1 needs investigation.
Therefore q = 2p and if p = 3, then it is easy to see that 52 | |H| and this
possibility is ruled out. Hence we assume p > 3. Now from t |H| = |G|

|P | and the
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fact that t | 2p we find 22(p−1) − 1 | |H| and a Zsigmondy prime argument for
22(p−1) − 1 rules out this case.

Case 17. P ∼= 2Dp′(3), p′ = 2m + 1 ≥ 5.

The odd order components of 2Dp′(3) are 3p′−1+1
2 and 3p′+1

4 and all the possi-

bilities are ruled out easily and only 3p′+1
4 = 2p−1 needs further investigation.

We have 3p′ = 2p+2 − 5. If p′ = 3, then p = 3 and it is easy to verify that
|P | - |G|. Hence we assume p′ > 3. From 3p′ = 2p+2 − 5 we obtain 3p′ > 2p+1,
hence 3p′(p′−1) > 33p′ > 23(p+1) which is a contradiction by Lemma 9 in [23].

Case 18. P ∼= 2Dp′+1(2), p′ = 2n − 1, n ≥ 2.
The odd order components of 2Dp′+1(2) are 2p′ + 1 and 2p′+1 + 1 and using
number theoretic methods the possibilities are ruled out.

Case 19. P ∼= G2(q), q ≡ 0 (mod 3).
The odd order components of G2(q) are q2−q+1 and q2 +q+1. If q2±q+1 =
3p+1

2 , then q2 ± q = 3p−3
2 and from the fact that q is a power of 3 we obtain

q = 3. Hence in the case of q2 + q + 1 = 3p−1
2 we obtain p = 3. Now

|G2(3)| = 29 · 36 · 7 · 13 and |D4(3)| = 213 · 312 · 52 · 7 · 13 and similar reasoning
as before shows 52 | |H| which results a contradiction. Therefore we should
consider the case q2 ± q + 1 = 2p − 1.

If q2 ± q + 1 = 2p − 1, then q2 ± q = 2p − 2. Let q = 3f . It can be checked
that f = 1 leads to a contradiction, hence f ≥ 2 and 9 | q2 ± q. But 9 | 2p − 2
if and only if p is of the form p = 6k + 1, where k ∈ N. First we consider
q2 + q + 1 = 2p − 1 which implies q2 + q = 2p − 2. Taking q2 + q modulo
4 we obtain q(q + 1) ≡ (−1)f ((−1)f + 1) which must be equal to 2 (mod 4).
Hence f must be even. Let f = 2h and find q(q + 1) modulo 8. We have
q(q + 1) = 32h(32h + 1) ≡ 2 (mod 8) which contradicts 2p − 2 ≡ 6 (mod 8).
Therefore the equality q2 + q + 1 = 2p − 1 is impossible.

If q2 − q + 1 = 2p − 1, then q2 − q = 2p − 2 and considering q(q − 1) ≡
(−1)f ((−1)f − 1) (mod 4) ≡ 2 (mod 4), we deduce that f must be odd, i.e.,
f = 2h+1. Since 2p−1 = 26k+1−1 ≡ 1 (mod 5), and q(q−1) = 32h+1(32h+1−
1) ≡ 3(−1)h(3(−1)h − 1) (mod 5), we must have h even. Hence f = 4l + 1
for some l ∈ N. Now q(q − 1) = 34l+1(34l+1 − 1) ≡ 6 (mod 16) which violates
2p − 2 = 26k+1 − 2 ≡ 14 (mod 16). In this way the possibility of P ∼= G2(q),
q ≡ 0 (mod 3) is ruled out.

Case 20. P ∼= 2G2(q), q = 32m+1 > 3.
The odd order components are q−√3q+1 and q+

√
3q+1. Clearly q±√3q+1 =

3p−1
2 leads to a contradiction because q is a power of 3. Therefore we consider

q±√3q+1 = 2p−1 which implies 3m+1(33±1) = 2p−2. Now similar methods
as in Case 19 rule out this possibility.

Case 21. P ∼= F4(q), q even; P ∼= 2F4(q), q = 22m+1 > 2.
In both cases if we equate the odd order components with 2p−1 a contradiction
is obtained because q is a power of 2. In the case of P ∼= F4(q) the odd order
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components are q4 +1 and q4−q2 +1. If q4 +1 = 3p−1
2 , then q4 = 3p−3

2 > 3p−1.
Since p > 3 we have q6 > 36(p−1) > 24(p+1) and by Lemma 6, q must be a power
of 3, a contradiction. Other cases are dealt with similarly.

Next our final cases are finite simple groups P with s(P ) > 3 which are
listed in Table 3.

Case 22. P ∼= 2B2(q), q = 22m+1 > 2.

(a) OC(G) = OC(Dp+1(2)).

In this case 2p − 1 can be equal to either of q − 1, q −√2q + 1 or q +
√

2q + 1.
If q ± √2q + 1 = 2p − 1, then q ± √2q = 2p − 2 and we get a contradiction
since q is a power of 2. If 2p − 1 = q − 1, then q = 2p, hence 2p − 1 | ∣∣2B2(q)

∣∣.
Now if s is a Zsigmondy prime for 24p − 1, then s | 22p + 1 and hence s is a
prime divisor of 2B2(q) that obviously does not divide |G| . This rules out the
possibility of P ∼= 2B2(q) in the case of Dp+1(2).

(b) OC(G) = OC(Dp+1(3)).

The case q − 1 = 3p−1
2 is impossible, because it implies q = 3p+1

2 which is not
a prime number. Therefore q ±√2q + 1 = 3p−1

2 . After substituting q = 22m+1

in the last equality we obtain 2m+2(2m ± 1) = 3(3p−1 − 1).
First we deal with 2m+2(2m + 1) = 3(3p−1 − 1). If p = 3, then m = 2 and

P ∼= 2B2(8). Now from |G/K| |H| = |G|
|P | we deduce that a Sylow 5-subgroup

of H has order 5, hence by Lemma 3 we must have m2 = 13 | 5 − 1 = 4, a
contradiction. Therefore we assume p > 3. Then p is in the form of p = 6l+1 or
6l +5 and 3(3p−1−1) ≡ 0 or 2 (mod 7), respectively. On the other hand, since
2m + 1 is divisible by 3 to the first power m must be of the form m = 6k + 1
or 6k + 5. But then 2m+2(2m + 1) ≡ 3 (mod 7) in both cases contradicting
3(3p−1 − 1) ≡ 0 or 2 (mod 7).

Next we consider 2m+2(2m − 1) = 3(3p−1 − 1). In this case p cannot be
equal to 3, hence p > 3. On the other hand since 2m − 1 is divisible by 3 to
the first power we obtain m = 6k + 2 or 6k + 4. Then 2m+2(2m + 1) ≡ 6 or
1 (mod 7), respectively, contradicting 3(3p−1 − 1) ≡ 0 or 2 (mod 7). This final
contradiction rules out the possibility P ∼= 2B2(q).

Case 23. P ∼= E8(q).
In this case if q ≡ 2, 3 (mod 5), then P has 3 odd order components, otherwise
it has 4 odd order components. Since the method works for all of the odd order
components we will consider only one of them, i.e., m2 = q10−q5+1

q2−q+1 .

If m2 = 2p − 1, then q10 − q5 + 1 = (q2 − q + 1)(2p − 1) > 2p − 1 implying
q10 > 2p. Hence q120 > 212p > 23(p+1) and by Lemma 9 in [23] we deduce that
q must be a power of 2. But q10−q5+1

q2−q+1 = q8 + q7− q5− q4− q3 + q + 1 = 2p− 1
from which we deduce q = 2 and in this case there is no prime p satisfying the
above equality.

If m2 = 3p−1
2 , then q10 − q5 + 1 = (q2 − q + 1)( 3p−1

2 ) > 3p − 1 implying
q10 > 3p. Hence q120 > 312p > 24(p+1), and by Lemma 6 q must be a power
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of 3. But then from q10−q5+1
q2−q+1 = 3p−1

2 we obtain q = 3 and there is no prime
p satisfying the above equation with q = 3. This final contradiction rules out
the possibility of P ∼= E8(q).

Finally since we have considered all the simple groups listed in Tables 1, 2,
and 3, the Main Theorem is proved now.
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