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MIXED CHORD-INTEGRALS OF STAR BODIES

Lu Fenghong

Abstract. The mixed chord-integrals are defined. The Fenchel-Aleksan-
drov inequality and a general isoperimetric inequality for the mixed chord-
integrals are established. Furthermore, the dual general Bieberbach in-
equality is presented. As an application of the dual form, a Brunn-
Minkowski type inequality for mixed intersection bodies is given.

1. Introduction and main results

In [6, 9] Lutwak posed the notion of the mixed width-integrals of convex
bodies (compact, convex subsets with non-empty interiors) and obtained a
great many properties in common with the dual quermassintegrals (see [7]).
It exists closely relations (see [5, 16]) between the mixed width-integrals and
mixed projection bodies (see [10, 12]). In [8] Lutwak established a general
Bieberbach inequality. Motivated by the ideas of Lutwak, we shall introduce
the definitions of the mixed chord-integrals of star bodies and establish a dual
general Bieberbach inequality.

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn

denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) and Kn

o denote the subset of Kn that contains the origin in their interiors
in Rn. Let Sn−1 denote the unit sphere in Rn. The volume of the unit n-
ball, U , will be denoted by ωn. If K ∈ Kn, then the support function of K,
hK = h(K, ·) : Rn −→ (0,∞), is defined by

(1.1) h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1

where u · x denotes the standard inner product of u and x. For K ∈ Kn and
u ∈ Sn−1, b(K, u) is half the width of K in the direction u.
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Mixed width-integrals, A(K1, . . . ,Kn), of K1, . . . ,Kn ∈ Kn was defined by
Lutwak (see [9])

(1.2) A(K1, . . . , Kn) =
1
n

∫

Sn−1
b(K1, u) · · · b(Kn, u)dS(u),

where dS is the (n−1)-dimensional volume element on Sn−1. More in general,
for a real number p 6= 0, the mixed width-integrals of order p, Ap(K1, . . . , Kn),
of K1, . . . , Kn ∈ Kn was also defined by Lutwak (see [9])

(1.3) Ap(K1, . . . , Kn) = ωn

[
1

nωn

∫

Sn−1
b(K1, u)p · · · b(Kn, u)pdS(u)

]1/p

,

Furthermore, Lutwak in [9] showed an isoperimetric inequality involving the
mixed width-integrals which generalized an inequality obtained by Chakerian
(see [1, 2]).

Theorem 1∗. If K1, . . . ,Kn ∈ Kn, then

(1.4) V (K1) · · ·V (Kn) ≤ An(K1, . . . , Kn),

with equality if and only if K1,K2, . . . ,Kn are n-balls.

A more general version of inequality (1.4) is obtained by introducing indexed
mixed width-integrals.

Theorem 2∗. If K1, . . . ,Kn ∈ Kn, p 6= 0 and −1 ≤ p ≤ ∞, then

(1.5) V (K1) · · ·V (Kn) ≤ An
p (K1, . . . , Kn),

with equality if and only if K1,K2, . . . ,Kn are n-balls.

Let Sn
o denote the set of star bodies in Rn containing the origin in their

interiors. In this paper, we give the definitions of the mixed chord-integrals,
B(L1, . . . , Ln) and for a real number p 6= 0, the mixed chord-integrals of order
p, Bp(L1, . . . , Ln), of L1, . . . , Ln ∈ Sn

o and the p-chord, d̃p(L), of L ∈ Sn
o ,

respectively. We mainly obtain the following results.
The analog of Theorem 1∗ (i.e., the general isoperimetric inequality involving

the mixed width-integrals) for the mixed chord-integrals is obtained:

Theorem 1. If L1, . . . , Ln ∈ Sn
o , then

(1.6) Bn(L1, . . . , Ln) ≤ V (L1) · · ·V (Ln),

with equality if and only if L1, . . . , Ln are dilates and centered.

A more general version of inequality (1.6) is obtained:

Theorem 2. If L1, . . . , Ln ∈ Sn
o and −∞ ≤ p ≤ 1, then

(1.7) Bn
p (L1, . . . , Ln) ≤ V (L1) · · ·V (Ln),

with equality if and only if L1, . . . , Ln are n-balls.
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Theorem 3. If L1, . . . , Ln ∈ Sn
o and 1 < m ≤ n, then

(1.8) Bm(L1, . . . , Ln) ≤
m−1∏

i=0

B(L1, . . . , Ln−m, Ln−i, . . . , Ln−i),

with equality if and only if Ln−m+1, Ln−m+2, . . . , Ln are all of similar chord.

A more general version of inequality (1.8) is obtained:

Theorem 4. If L1, . . . , Ln ∈ Sn
o and 1 < m ≤ n, then for p > 0

(1.9) Bm
p (L1, . . . , Ln) ≤

m−1∏

i=0

Bp(L1, . . . , Ln−m, Ln−i, . . . , Ln−i),

with equality if and only if Ln−m+1, Ln−m+2, . . . , Ln are all of similar chord.
For p < 0, inequality (1.9) is reversed.

Theorem 3 and Theorem 4 are just analogs of the Fenchel-Aleksandrov in-
equality for the dual mixed volumes (see [7]).

Moreover, we obtain the dual general Bieberbach inequality as follows.

Theorem 5. If L ∈ Sn
o and −∞ ≤ p < n, then

(1.10) V (L) ≥ ωnd̃p(L)n,

with equality if and only if L is an n-ball.

Theorem 5 is just a dual form of the following general Bieberbach inequality
which was shown by Lutwak [8].

Theorem 5∗. If K ∈ Kn and −n < p ≤ ∞, then

(1.11) V (K) ≤ ωnb̄p(K)n,

with equality if and only if K is an n-ball.

As an application of Theorem 5, we establish a Brunn-Minkowski type in-
equality for mixed intersection bodies which defined in [11, 15].

Theorem 6. If L1, L2 ∈ Sn
o and i ≤ n− 1, then

W̃i(I(L1+̆L2))1/(n−i) ≤ W̃i(IL1)1/(n−i) + W̃i(IL2)1/(n−i),

with equality if and only if L1 and L2 are dilates. If n − 1 < i < n or i > n,
then this inequality is reversed.

In particular, for i = 0, we obtain:

Corollary 1. If L1, L2 ∈ Sn
o , then

V (I(L1+̆L2))1/n ≤ V (IL1)1/n + V (IL2)1/n,

with equality if and only if L1 and L2 are dilates.
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2. Mixed chord-integrals

For a compact subset L of Rn, which is star-shaped with respect to the
origin, we shall use ρ(L, ·) to denote its radial function; i.e., for u ∈ Sn−1,

(2.1) ρ(L, u) = max{λ > 0 : λu ∈ L}.
If ρ(L, ·) is continuous and positive, L will be called a star body. Two star
bodies K and L are said to be dilates if ρK(u)/ρL(u) is independent of u ∈
Sn−1.

If K ∈Kn
o , the polar body of K, K∗, is defined by

(2.2) K∗ = {x ∈ Rn : x · y ≤ 1, x ∈ K}.
Obviously, we have (K∗)∗ = K. From the definition (2.2), we also know that:
If K ∈Kn

o , then the support and radial function of K∗, the polar body of K,
are respectively defined by

(2.3) hK∗ =
1

ρK
and ρK∗ =

1
hK

.

The polar coordinate formula for volume of body L in Rn is

(2.4) V (L) =
1
n

∫

Sn−1
ρ(L, u)ndS(u).

If L ∈ Sn
o and u ∈ Sn−1, we let

(2.5) d(L, u) =
1
2
ρ(L, u) +

1
2
ρ(L,−u),

i.e., d(L, u) denotes half the chord of L in the direction u. Star bodies L1, . . . , Ln

are said to have similar chord if there exist constants λ1, . . . , λn > 0 such that
λ1d(L1, u) = · · · = λnd(Ln, u) for all u ∈ Sn−1; they are said to have constant
chord jointly if the product d(L1, u) · · · d(Ln, u) is constant for all u ∈ Sn−1.
For reference see Gardner ([3]) and schneider ([14]).

Following Lutwak, we define the mixed chord integral of star bodies: For
L1, . . . , Ln ∈ Sn

o , the mixed chord-integral, B(L1, . . . , Ln), of L1, . . . , Ln is
defined by

(2.6) B(L1, . . . , Ln) =
1
n

∫

Sn−1
d(L1, u) · · · d(Ln, u)dS(u).

By this definition, B is a map

B : Sn
o × · · · × Sn

o︸ ︷︷ ︸
n

−→ R.

We list some of its elementary properties.
(i) (Continuity) The mixed chord-integral B(L1, . . . , Ln) is a continuous

function of L1, . . . , Ln ∈ Sn
o .

(ii) (Positivity) For L1, . . . , Ln ∈ Sn
o , B(L1, . . . , Ln) > 0.

(iii) (Positively homogeneous) If L1, . . . , Ln ∈ Sn
o and λ1, . . . , λn > 0, then

B(λ1L1, . . . , λnLn) = λ1 · · ·λnB(L1, . . . , Ln).
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(iv) (Monotonicity for set inclusion) If Ki, Li ∈ Sn
o , Ki ⊂ Li and 1 ≤ i ≤ n,

then
B(K1, . . . , Kn) ≤ B(L1, . . . , Ln),

with equality if and only if Ki = Li for 1 ≤ i ≤ n.
(v) (Change under linear transformations) If L1, . . . , Ln ∈ Sn

o and φ ∈
GL(n), then

B(φL1, . . . , φLn) = | detφ|B(L1, . . . , Ln).
Just as the width-integrals Bi(K) (see [6]) of K ∈ Kn, are defined to be the

special mixed width-integrals

A(K, . . . ,K︸ ︷︷ ︸
n−i

, U, . . . , U︸ ︷︷ ︸
i

),

the chord-integrals Di(L) of L ∈ Sn
o , can be defined as the special mixed chord-

integral
B(L, . . . , L︸ ︷︷ ︸

n−i

, U, . . . , U︸ ︷︷ ︸
i

).

Now we generalize the notion of the mixed chord-integral of star bodies: For
L1, . . . , Ln ∈ Sn

o and a real number p 6= 0, the mixed chord-integral of order p,
Bp(L1, . . . , Ln), of L1, . . . , Ln is defined by

(2.7) Bp(L1, . . . , Ln) = ωn

[
1

nωn

∫

Sn−1
d(L1, u)p · · · d(Ln, u)pdS(u)

]1/p

.

Specially p = 1, then definition (2.7) is just definition (2.6). For p equal to
−∞, 0 or ∞ we respectively define the mixed chord-integral of order p by

Bp(L1, . . . , Ln) = lim
s→p

Bs(L1, . . . , Ln).

As a direct consequence of Jensen’s inequality [4] we have:

Proposition 1. If L1, . . . , Ln ∈ Sn
o and −∞ ≤ p < q ≤ ∞, then

Bp(L1, . . . , Ln) ≤ Bq(L1, . . . , Ln),

with equality if and only if L1, . . . , Ln have constant chord jointly.

The well-known Blaschke-Santaló inequality (see [13]) can be stated: For
K ∈ Kn

o , then

(2.8) V (K)V (K∗) ≤ ω2
n,

with equality if and only if K is an n-dimensional ellipsoid.
By combining the well-known Blaschke-Santaló inequality with Theorem 2,

we obtain the Blaschke-Santaló type inequality for the mixed chord-integral of
order p (the mixed chord-integral when p = 1).

Corollary 2. If K1, . . . ,Kn ∈ Kn
o , then

Bp(K1, . . . , Kn)Bp(K∗
1 , . . . ,K∗

n) ≤ ω2
n,

with equality if and only if K1, . . . , Kn are n-balls.
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In particular, if L1 = · · · = Ln−i = L and Ln−i+1 = · · · = Ln = U , then
Theorem 1 becomes:

Corollary 3. If L ∈ Sn
o and 0 ≤ i ≤ n, then

Dn
i (L) ≤ ωi

nV (L)n−i,

with equality if and only if L is an n-ball.

Combing Theorems 1∗ and 2∗ with Theorems 1 and 2, we obtain the fol-
lowing relations between B(L1, . . . , Ln), Bp(L1, . . . , Ln) and A(L1, . . . , Ln),
Ap(L1, . . . , Ln), respectively.

Corollary 4. If K1, . . . ,Kn ∈ Kn, then

B(K1, . . . , Kn) ≤ A(K1, . . . , Kn),

with equality if and only if K1,K2, . . . ,Kn are n-balls.

Corollary 5. If K1, . . . ,Kn ∈ Kn and −1 ≤ p ≤ 1, then

Bp(K1, . . . , Kn) ≤ Ap(K1, . . . , Kn),

with equality if and only if K1,K2, . . . ,Kn are n-balls.

Proof of Theorem 1. For L1, . . . , Ln ∈ Sn
o . From definition (2.6), Hölder inte-

gral inequality [4], definition (2.5), Minkowski integral inequality [4] and for-
mula (2.4), we have

B(L1, . . . , Ln)

=
1
n

∫

Sn−1
d(L1, u) · · · d(Ln, u)dS(u)

≤ n−1/n‖d(L1, u)‖n · · ·n−1/n‖d(Ln, u)‖n

= n−1/n‖1
2
ρ(L1, u) +

1
2
ρ(L1,−u)‖n · · ·n−1/n‖1

2
ρ(Ln, u) +

1
2
ρ(Ln,−u)‖n

≤ n−1/n‖ρ(L1, u)‖n · · ·n−1/n‖ρ(Ln, u)‖n

= V
1
n (L1) · · ·V 1

n (Ln).

In view of the equality conditions of Hölder integral inequality and Minkowski
integral inequality, equality of inequality (1.6) holds if and only if L1, . . . , Ln

are dilates and centered. Thus we obtain the conclusion. ¤

Proof of Theorem 2. For L1, . . . , Ln ∈ Sn
o and −∞ ≤ p ≤ 1. By combining

Theorem 1 with Proposition 1 we obtain

Bn
p (L1, . . . , Ln) ≤ Bn

1 (L1, . . . , Ln)

≤ V (L1) · · ·V (Ln).

In view of the equality conditions of Theorem 1 and Proposition 1, equality
holds if and only if L1, . . . , Ln are n-balls. Thus we obtain the conclusion. ¤
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In order to prove Theorem 3 and Theorem 4 in the introduction, we require
the following simple extension of Hölder’s inequality.

Lemma 1 (see [7]). If f0, f1, . . . , fm are (strictly) positive continuous func-
tions defined on Sn−1 and λ1, . . . , λm are positive constants the sum of whose
reciprocals is unity, then

∫

Sn−1
f0(u)f1(u) · · · fm(u)dS(u) ≤

m∏

i=1

[∫

Sn−1
f0(u)fλi

i (u)dS(u)
]1/λi

,

with equality if and only if there exist positive constants α1, . . . , αm such that
α1f

λ1
1 (u) = · · · = αmfλm

m (u) for all u ∈ Sn−1.

Proof of Theorem 3. For L1, . . . , Ln ∈ Sn
o . Let

λi = m (1 ≤ i ≤ m),

f0 = d(L1, u) · · · d(Ln−m, u) (f0 = 1 if m = n),

fi = d(Ln−i+1, u) (1 ≤ i ≤ m).

Using Lemma 1, we have∫

Sn−1
d(L1, u) · · · d(Ln, u)dS(u)

≤
m∏

i=1

[∫

Sn−1
d(L1, u) · · · d(Ln−m, u)d(Ln−i+1, u)mdS(u)

]1/λi

,

with equality if and only if Ln−m+1, Ln−m+2, . . . , Ln are all of similar chord.
Thus we obtain the conclusion. ¤
Proof of Theorem 4. For L1, . . . , Ln ∈ Sn

o . Let
λi = m (1 ≤ i ≤ m),

f0 = d(L1, u)p · · · d(Ln−m, u)p (f0 = 1 if m = n),

fi = d(Ln−i+1, u)p (1 ≤ i ≤ m).

Using Lemma 1, we have∫

Sn−1
d(L1, u)p · · · d(Ln, u)pdS(u)

≤
m∏

i=1

[∫

Sn−1
d(L1, u)p · · · d(Ln−m, u)pd(Ln−i+1, u)pmdS(u)

]1/λi

,

with equality if and only if Ln−m+1, Ln−m+2, . . . , Ln are all of similar chord.
For p > 0, we get

ωn

[
1

nωn

∫

Sn−1
d(L1, u)p · · · d(Ln, u)pdS(u)

]1/p

≤ ωn

m∏

i=1

[
1

nωn

∫

Sn−1
d(L1, u)p · · · d(Ln−m, u)pd(Ln−i+1, u)pdS(u)

]1/pλi

,
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with equality if and only if Ln−m+1, Ln−m+2, . . . , Ln are all of similar chord.
For p < 0, inequality above is reversed.

Thus we obtain the conclusion. ¤

3. Dual general Bieberbach inequality

In [8] Lutwak established a general Bieberbach inequality which has the
Bieberbach, Urysohn and harmonic Urysohn inequalities as special cases. Fol-
lowing Lutwak, we give a dual general Bieberbach inequality.

If L ∈ Sn
o and i ∈ R, then the i-th dual quermassintegrals is defined by

Lutwak (see [7])

(3.1) W̃i(L) =
1
n

∫

Sn−1
ρ(L, u)n−idS(u).

Specifically, W̃0(K) = V (K), and W̃n(K) = ωn.
For L ∈ Sn

o , the intersection body of L, IL is the centrally symmetric body
whose radial function on Sn−1 is given by (see [11]),

(3.2) ρ(IL, u) =
1

n− 1

∫

Sn−1∩u⊥
ρ(L, v)n−1dλn−2(v),

where λn−2 denotes (n − 2)-dimensional Lebesgue measure. For u ∈ Sn−1,
L∩u⊥ denotes the intersection of L with the subspace u⊥ that passes through
the origin and is orthogonal to u.

For L1, L2 ∈ Sn
o , the radial addition L1+̃L2 is defined as the star body

whose radial function is given by (see [11]),

(3.3) ρ(L1+̃L2, ·) = ρ(L1, ·) + ρ(L2, ·).
The radial Blaschke linear addition, λ ·K+̆µ ·L, is defined by Lutwak (see [11]),
whose radial function satisfies for u ∈Sn−1 (see [11])

ρ(λ ·K+̆µ · L, u)n−1 = λρ(K, u)n−1 + µρ(L, u)n−1.

The following properties will be used later: If L1, L2 ∈ Sn
o and λ, µ > 0,

then

(3.4) d(L1+̃L2, ·) = d(L1, ·) + d(L2, ·),
(3.5) I(λ ·K+̆µ · L) = λIK+̃µIL.

For K ∈ Kn and a real number p 6= 0, the p-width, b̄p(K) of K was defined
by Lutwak in ([8])

(3.6) b̄p(K) =
[

1
nωn

∫

Sn−1
bp(K, u)dS(u)

]1/p

,

where the definition (3.6) differs slightly from that of Lutwak (see [8]) in that
we multiply a constant factor. For p equal to −∞, 0 or ∞ the p-width of K
was defined by

b̄p(K) = lim
s→p

b̄s(K).
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In order to establish the dual general Bieberbach inequality, we shall also
introduce the dual concept of the p-width of convex body: For L ∈ Sn

o and a
real number p 6= 0, the p-chord, d̃p(L) of L was defined by

(3.7) d̃p(L) =
[

1
nωn

∫

Sn−1
dp(L, u)dS(u)

]1/p

.

For p equal to −∞, 0 or ∞ the p-chord of L was defined by

d̃p(L) = lim
s→p

d̃s(L).

For a fixed p, the p-chord is a map

d̃p : Sn
o −→ R.

Similar to the mixed chord-integral, it is positive, continuous, bounded, homo-
geneous of degree one and monotone under set inclusion.

From Theorem 5 and Theorem 5∗ we can obtain the relation between the
dual general Bieberbach inequality and the general Bieberbach inequality as
follows.

Corollary 6. If K ∈ Kn and −n < p < n, then

d̃p(K) ≤ b̄p(K),

with equality if and only if K is an n-ball.

We shall prove the following relation between the p-chord of convex body
and the p-chord of polar for convex body.

Theorem 7. If K ∈ Kn
o and −∞ ≤ p < n, then

d̃p(K)d̃p(K∗) ≤ 1,

with equality if and only if K is an n-ball.

Theorem 7 is just the dual of the following relation between the p-width of
convex body and the p-width of polar for convex body which was shown by
Lutwak (see [8]).

Theorem 7∗. If K ∈ Kn and −n < p ≤ ∞, then

b̄p(K)b̄p(K∗) ≥ 1,

with equality if and only if K is an n-ball.

Furthermore, we establish the following Brunn-Minkowski inequality for the
p-chord of star bodies.

Theorem 8. For L1, L2 ∈ Sn
o , p ≥ 1 and α ∈ [0, 1], then

(3.8)
d̃p(L1+̃L2) ≤ d̃p(αL1+̃(1− α)L2) + d̃p((1− α)L1+̃αL2)

≤ d̃p(L1) + d̃p(L2),

in each inequalities, with equality if and only if L1 and L2 have similar chord.
If p < 1 and p 6= 0, then inequality (3.8) is reversed.
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Proof of Theorem 5. For L ∈ Sn
o , taking p = n, from definition (3.7), definition

(2.5), Minkowski integral inequality (see [4]) and formula (2.4), we get

(3.9)

d̃n(L) =
[

1
nωn

∫

Sn−1
dn(L, u)dS(u)

]1/n

=
[

1
nωn

∫

Sn−1
[
1
2
ρ(L, u) +

1
2
ρ(L,−u)]ndS(u)

]1/n

≤ ω−1/n
n

[
1
n

∫

Sn−1
ρn(L, u)dS(u)

]1/n

= ω−1/n
n V (L)1/n,

with equality if and only if L is centered. From Jensen’s inequality (see [4]), it
follows that for −∞ ≤ p < n

(3.10) d̃n(L) ≥ d̃p(L),

with equality if and only if L is of constant chord.
Combing these inequalities above, we have

V (L) ≥ ωnd̃p(L)n,

with equality if and only if L is an n-ball. ¤

Proof of Theorem 7. For K ∈ Kn
o , combing inequality (3.9) with Blaschke-

Santaló inequality, we obtain

(3.11) ωnd̃n(K)−n ≥ V (K∗),

with equality if and only if L is an n-ball. By combing inequality (3.10) and
inequality (3.11), we have for −∞ ≤ p < n,

(3.12) ωnd̃p(K)−n ≥ V (K∗),

with equality if and only if L is an n-ball.
According to the inequality (3.11), inequality (3.12) and the dual general

Bieberbach inequality, we obtain the desired result. ¤

Proof of Theorem 8. For L1, L2 ∈ Sn
o , p ≥ 1 and α ∈ [0, 1]. From definition

(3.7) and formula (3.4), Minkowski integral inequality, definition (3.7) and (3.4)
again, Minkowski integral inequality again, definition (3.7) again, it follows that

d̃p(L1+̃L2) = (nωn)−1/p‖d(L1+̃L2, u)‖p

= (nωn)−1/p‖d(L1, u) + d(L2, u)‖p
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= (nωn)−1/p‖[αd(L1, u) + (1− α)d(L2, u)]

+ [(1− α)d(L1, u) + αd(L2, u)]‖p

≤ (nωn)−1/p‖αd(L1, u) + (1− α)d(L2, u)‖p

+ (nωn)−1/p‖(1− α)d(L1, u) + αd(L2, u)]‖p

= d̃p(αL1+̃(1− α)L2) + d̃p((1− α)L1+̃αL2)

≤ (nωn)−1/p‖αd(L1, u)‖p + (nωn)−1/p‖(1− α)d(L2, u)‖p

+ (nωn)−1/p‖(1− α)d(L1, u)‖p + (nωn)−1/p‖αd(L2, u)‖p

= d̃p(L1) + d̃p(L2),

in each inequalities, with equality if and only if L1 and L2 have similar chord.
In view of the inverse Minkowski integral inequality, similar above the proof,
the cases of p < 1 and p 6= 0 can also be proved. Here we omit the details, i.e.,
if p < 1 and p 6= 0, then this inequality is reversed. ¤

Proof of Theorem 6. For L1, L2 ∈ Sn
o and i ≤ n− 1. Since I(L1+̆L2), IL1 and

IL2 are centered, then

d(I(L1+̆L2), u) = ρ(I(L1+̆L2), u),

d(IL1, u) = ρ(IL1, u), d(IL2, u) = ρ(IL2, u).
Combing Theorem 8 with definition (3.1) and equalities above, we have

W̃i(I(L1+̆L2))1/(n−i) ≤ W̃i(IL1)1/(n−i) + W̃i(IL2)1/(n−i),

with equality if and only if L1 and L2 are dilates. If n − 1 < i < n or i > n,
then this inequality is reversed. ¤
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